通过拓扑数据分析揭示模式形成过程机制的程序

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2024-09-13 DOI:10.1016/j.physd.2024.134359
Yoh-ichi Mototake , Masaichiro Mizumaki , Kazue Kudo , Kenji Fukumizu
{"title":"通过拓扑数据分析揭示模式形成过程机制的程序","authors":"Yoh-ichi Mototake ,&nbsp;Masaichiro Mizumaki ,&nbsp;Kazue Kudo ,&nbsp;Kenji Fukumizu","doi":"10.1016/j.physd.2024.134359","DOIUrl":null,"url":null,"abstract":"<div><p>Topological data analysis (TDA) is a versatile tool that can be used to extract scientific knowledge from complex pattern formation processes. However, the physics correspondence between the features obtained from TDA and pattern dynamics does not agree one-to-one, and the physical interpretation of the TDA features needs to be set appropriately according to the phenomenon to be analyzed. In this study, we propose an analytical procedure to physically interpret pattern dynamics through TDA and machine learning techniques. The proposed procedure was applied to the process of magnetic domain pattern formation to quantify non-trivial domain pattern classifications and reveal the nature of the underlying dynamics. On the basis of these findings, we also propose a candidate reduction model to understand the nature of magnetic domain formation.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134359"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924003099/pdfft?md5=11be29a0af275e372cb120d14ec7396f&pid=1-s2.0-S0167278924003099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Procedure to reveal the mechanism of pattern formation process by topological data analysis\",\"authors\":\"Yoh-ichi Mototake ,&nbsp;Masaichiro Mizumaki ,&nbsp;Kazue Kudo ,&nbsp;Kenji Fukumizu\",\"doi\":\"10.1016/j.physd.2024.134359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Topological data analysis (TDA) is a versatile tool that can be used to extract scientific knowledge from complex pattern formation processes. However, the physics correspondence between the features obtained from TDA and pattern dynamics does not agree one-to-one, and the physical interpretation of the TDA features needs to be set appropriately according to the phenomenon to be analyzed. In this study, we propose an analytical procedure to physically interpret pattern dynamics through TDA and machine learning techniques. The proposed procedure was applied to the process of magnetic domain pattern formation to quantify non-trivial domain pattern classifications and reveal the nature of the underlying dynamics. On the basis of these findings, we also propose a candidate reduction model to understand the nature of magnetic domain formation.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134359\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003099/pdfft?md5=11be29a0af275e372cb120d14ec7396f&pid=1-s2.0-S0167278924003099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003099\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

拓扑数据分析(TDA)是一种多功能工具,可用于从复杂的模式形成过程中提取科学知识。然而,拓扑数据分析得到的特征与模式动力学之间的物理对应关系并不是一一对应的,拓扑数据分析特征的物理解释需要根据要分析的现象进行适当设置。在本研究中,我们提出了一种通过 TDA 和机器学习技术对模式动态进行物理解释的分析程序。我们将所提出的程序应用于磁畴模式的形成过程,以量化非三维磁畴模式分类,并揭示潜在动态的本质。在这些发现的基础上,我们还提出了一个候选还原模型来理解磁畴形成的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Procedure to reveal the mechanism of pattern formation process by topological data analysis

Topological data analysis (TDA) is a versatile tool that can be used to extract scientific knowledge from complex pattern formation processes. However, the physics correspondence between the features obtained from TDA and pattern dynamics does not agree one-to-one, and the physical interpretation of the TDA features needs to be set appropriately according to the phenomenon to be analyzed. In this study, we propose an analytical procedure to physically interpret pattern dynamics through TDA and machine learning techniques. The proposed procedure was applied to the process of magnetic domain pattern formation to quantify non-trivial domain pattern classifications and reveal the nature of the underlying dynamics. On the basis of these findings, we also propose a candidate reduction model to understand the nature of magnetic domain formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
The dynamic of the positons for the reverse space–time nonlocal short pulse equation Symmetric comet-type periodic orbits in the elliptic three-dimensional restricted (N+1)-body problem Jensen-autocorrelation function for weakly stationary processes and applications About the chaos influence on a system with multi-frequency quasi-periodicity and the Landau-Hopf scenario Global dynamics of a periodically forced SI disease model of Lotka–Volterra type
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1