{"title":"受米兰科维奇和亚米兰科维奇周期性控制的蒙特圣尼古拉剖面(格拉西GSSP / MIS 100-104)钙质化石的可变性","authors":"Sergio Bonomo , Elena Zanola , Alessandro Incarbona , Agata Di Stefano , Salvatore Distefano , Viviana Barbagallo , Patrizia Ferretti , Eliana Fornaciari , Patrizia Macrì , Isabella Raffi , Nadia Sabatino , Fabio Speranza , Mario Sprovieri , Enrico Di Stefano , Rodolfo Sprovieri , Domenico Rio , Luca Capraro","doi":"10.1016/j.marmicro.2024.102397","DOIUrl":null,"url":null,"abstract":"<div><p>The Quaternary marks the beginning of the ice ages, with the establishment of a stable Northern Hemisphere ice sheet. The Monte San Nicola section, southern Sicily (Italy) is the Global Boundary Stratotype Section and Point of the Gelasian Stage of the Lower Quaternary Subseries and is attracting new attention for providing valuable information on paleoclimate evolution.</p><p>Here we present a paleoenvironmental reconstruction based on new data from calcareous nannoplankton, the phytoplankton organisms that are sensitive to sea surface changes and water column dynamics. We adopt statistical and signal analysis to support our paleoenvironmental model. The most evident paleoenvironmental signal throughout the investigated interval is the contrast between the abundance patterns of placoliths and <em>Florisphaera profunda</em>, the former pointing to surface productivity (water column mixing, shallow nutricline), the latter to the establishment of a deep nutricline. The observed nutricline depth shift occurred with a regular precessional pace, following Northern Hemisphere summer insolation and, likely, North African monsoon activity. A significant periodicity of 8 kyr, in tune with late Quaternary Heinrich events, is also observed in nannoplankton taxa, supporting previous findings on the existence of suborbital climatic variability even at the Pliocene-Pleistocene transition.</p></div>","PeriodicalId":49881,"journal":{"name":"Marine Micropaleontology","volume":"192 ","pages":"Article 102397"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377839824000677/pdfft?md5=e9e62edcb14e48537ccc5dbd5e8458e6&pid=1-s2.0-S0377839824000677-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Calcareous Nannofossil variability controlled by Milankovitch and sub-Milankovitch periodicity in the Monte San Nicola section (Gelasian GSSP / MIS 100–104)\",\"authors\":\"Sergio Bonomo , Elena Zanola , Alessandro Incarbona , Agata Di Stefano , Salvatore Distefano , Viviana Barbagallo , Patrizia Ferretti , Eliana Fornaciari , Patrizia Macrì , Isabella Raffi , Nadia Sabatino , Fabio Speranza , Mario Sprovieri , Enrico Di Stefano , Rodolfo Sprovieri , Domenico Rio , Luca Capraro\",\"doi\":\"10.1016/j.marmicro.2024.102397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Quaternary marks the beginning of the ice ages, with the establishment of a stable Northern Hemisphere ice sheet. The Monte San Nicola section, southern Sicily (Italy) is the Global Boundary Stratotype Section and Point of the Gelasian Stage of the Lower Quaternary Subseries and is attracting new attention for providing valuable information on paleoclimate evolution.</p><p>Here we present a paleoenvironmental reconstruction based on new data from calcareous nannoplankton, the phytoplankton organisms that are sensitive to sea surface changes and water column dynamics. We adopt statistical and signal analysis to support our paleoenvironmental model. The most evident paleoenvironmental signal throughout the investigated interval is the contrast between the abundance patterns of placoliths and <em>Florisphaera profunda</em>, the former pointing to surface productivity (water column mixing, shallow nutricline), the latter to the establishment of a deep nutricline. The observed nutricline depth shift occurred with a regular precessional pace, following Northern Hemisphere summer insolation and, likely, North African monsoon activity. A significant periodicity of 8 kyr, in tune with late Quaternary Heinrich events, is also observed in nannoplankton taxa, supporting previous findings on the existence of suborbital climatic variability even at the Pliocene-Pleistocene transition.</p></div>\",\"PeriodicalId\":49881,\"journal\":{\"name\":\"Marine Micropaleontology\",\"volume\":\"192 \",\"pages\":\"Article 102397\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377839824000677/pdfft?md5=e9e62edcb14e48537ccc5dbd5e8458e6&pid=1-s2.0-S0377839824000677-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Micropaleontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377839824000677\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Micropaleontology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377839824000677","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
Calcareous Nannofossil variability controlled by Milankovitch and sub-Milankovitch periodicity in the Monte San Nicola section (Gelasian GSSP / MIS 100–104)
The Quaternary marks the beginning of the ice ages, with the establishment of a stable Northern Hemisphere ice sheet. The Monte San Nicola section, southern Sicily (Italy) is the Global Boundary Stratotype Section and Point of the Gelasian Stage of the Lower Quaternary Subseries and is attracting new attention for providing valuable information on paleoclimate evolution.
Here we present a paleoenvironmental reconstruction based on new data from calcareous nannoplankton, the phytoplankton organisms that are sensitive to sea surface changes and water column dynamics. We adopt statistical and signal analysis to support our paleoenvironmental model. The most evident paleoenvironmental signal throughout the investigated interval is the contrast between the abundance patterns of placoliths and Florisphaera profunda, the former pointing to surface productivity (water column mixing, shallow nutricline), the latter to the establishment of a deep nutricline. The observed nutricline depth shift occurred with a regular precessional pace, following Northern Hemisphere summer insolation and, likely, North African monsoon activity. A significant periodicity of 8 kyr, in tune with late Quaternary Heinrich events, is also observed in nannoplankton taxa, supporting previous findings on the existence of suborbital climatic variability even at the Pliocene-Pleistocene transition.
期刊介绍:
Marine Micropaleontology is an international journal publishing original, innovative and significant scientific papers in all fields related to marine microfossils, including ecology and paleoecology, biology and paleobiology, paleoceanography and paleoclimatology, environmental monitoring, taphonomy, evolution and molecular phylogeny. The journal strongly encourages the publication of articles in which marine microfossils and/or their chemical composition are used to solve fundamental geological, environmental and biological problems. However, it does not publish purely stratigraphic or taxonomic papers. In Marine Micropaleontology, a special section is dedicated to short papers on new methods and protocols using marine microfossils. We solicit special issues on hot topics in marine micropaleontology and review articles on timely subjects.