通过识别非零决策变量实现稀疏大规模多目标优化

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-07-19 DOI:10.1109/TSMC.2024.3418346
Xiangyu Wang;Ran Cheng;Yaochu Jin
{"title":"通过识别非零决策变量实现稀疏大规模多目标优化","authors":"Xiangyu Wang;Ran Cheng;Yaochu Jin","doi":"10.1109/TSMC.2024.3418346","DOIUrl":null,"url":null,"abstract":"Sparse large-scale evolutionary multiobjective optimization has garnered substantial interest over the past years due to its significant practical implications. These optimization problems are characterized by a predominance of zero-valued decision variables in the Pareto optimal solutions. Most existing algorithms focus on exploiting the sparsity of solutions by starting with initializing all decision variables with a nonzero value. Opposite to the existing approaches, we propose to initialize all decision variables to zero, then progressively identify and optimize the nonzero ones. The proposed framework consists of two stages. In the first stage of evolutionary optimization, a clustering method is applied at a predefined period of generations to identify nonzero decision variables according to the statistics of each variable’s current and historical values. Once a new nonzero decision variable is identified, it is randomly initialized within one of the two intervals, one defined by its lower quartile and lower bound, and the other by its upper quartile and upper bound. In the second stage, the clustering method is also periodically employed to distinguish between zero and nonzero decision variables. Different to the first stage, the zero decision variables will be set to zero straight, and the nonzero decision variables will be mutated at a higher probability. The performance of the proposed framework is empirically examined against state-of-the-art evolutionary algorithms on both sparse and nonsparse benchmarks and real-world problems, demonstrating its superior performance on different classes of problems.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Large-Scale Multiobjective Optimization by Identifying Nonzero Decision Variables\",\"authors\":\"Xiangyu Wang;Ran Cheng;Yaochu Jin\",\"doi\":\"10.1109/TSMC.2024.3418346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse large-scale evolutionary multiobjective optimization has garnered substantial interest over the past years due to its significant practical implications. These optimization problems are characterized by a predominance of zero-valued decision variables in the Pareto optimal solutions. Most existing algorithms focus on exploiting the sparsity of solutions by starting with initializing all decision variables with a nonzero value. Opposite to the existing approaches, we propose to initialize all decision variables to zero, then progressively identify and optimize the nonzero ones. The proposed framework consists of two stages. In the first stage of evolutionary optimization, a clustering method is applied at a predefined period of generations to identify nonzero decision variables according to the statistics of each variable’s current and historical values. Once a new nonzero decision variable is identified, it is randomly initialized within one of the two intervals, one defined by its lower quartile and lower bound, and the other by its upper quartile and upper bound. In the second stage, the clustering method is also periodically employed to distinguish between zero and nonzero decision variables. Different to the first stage, the zero decision variables will be set to zero straight, and the nonzero decision variables will be mutated at a higher probability. The performance of the proposed framework is empirically examined against state-of-the-art evolutionary algorithms on both sparse and nonsparse benchmarks and real-world problems, demonstrating its superior performance on different classes of problems.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605095/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605095/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

稀疏大规模进化多目标优化因其重要的实际意义,在过去几年中引起了广泛关注。这些优化问题的特点是帕累托最优解中零值决策变量占主导地位。现有的大多数算法都侧重于利用解的稀疏性,首先将所有决策变量初始化为非零值。与现有方法相反,我们建议将所有决策变量初始化为零,然后逐步识别和优化非零决策变量。建议的框架包括两个阶段。在进化优化的第一阶段,根据每个变量当前值和历史值的统计数据,在预定的世代周期内应用聚类方法来识别非零决策变量。一旦确定了一个新的非零决策变量,它就会被随机初始化在两个区间中的一个区间内,一个区间由其下四分位值和下限值定义,另一个区间由其上四分位值和上限值定义。在第二阶段,也会定期使用聚类方法来区分零决策变量和非零决策变量。与第一阶段不同的是,零决策变量将直接设为零,而非零决策变量将以更高的概率发生变异。在稀疏和非稀疏基准以及真实世界问题上,对所提出框架的性能与最先进的进化算法进行了实证检验,证明了它在不同类别问题上的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Large-Scale Multiobjective Optimization by Identifying Nonzero Decision Variables
Sparse large-scale evolutionary multiobjective optimization has garnered substantial interest over the past years due to its significant practical implications. These optimization problems are characterized by a predominance of zero-valued decision variables in the Pareto optimal solutions. Most existing algorithms focus on exploiting the sparsity of solutions by starting with initializing all decision variables with a nonzero value. Opposite to the existing approaches, we propose to initialize all decision variables to zero, then progressively identify and optimize the nonzero ones. The proposed framework consists of two stages. In the first stage of evolutionary optimization, a clustering method is applied at a predefined period of generations to identify nonzero decision variables according to the statistics of each variable’s current and historical values. Once a new nonzero decision variable is identified, it is randomly initialized within one of the two intervals, one defined by its lower quartile and lower bound, and the other by its upper quartile and upper bound. In the second stage, the clustering method is also periodically employed to distinguish between zero and nonzero decision variables. Different to the first stage, the zero decision variables will be set to zero straight, and the nonzero decision variables will be mutated at a higher probability. The performance of the proposed framework is empirically examined against state-of-the-art evolutionary algorithms on both sparse and nonsparse benchmarks and real-world problems, demonstrating its superior performance on different classes of problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents Guest Editorial Enabling Technologies and Systems for Industry 5.0: From Foundation Models to Foundation Intelligence IEEE Transactions on Systems, Man, and Cybernetics publication information IEEE Transactions on Systems, Man, and Cybernetics publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1