物种丰富度对全球树木生长对长期干旱的抵抗力和恢复力的增强效应。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-20 DOI:10.1073/pnas.2410467121
Yun-Hao Bai,Zhiyao Tang
{"title":"物种丰富度对全球树木生长对长期干旱的抵抗力和恢复力的增强效应。","authors":"Yun-Hao Bai,Zhiyao Tang","doi":"10.1073/pnas.2410467121","DOIUrl":null,"url":null,"abstract":"The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought.\",\"authors\":\"Yun-Hao Bai,Zhiyao Tang\",\"doi\":\"10.1073/pnas.2410467121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2410467121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410467121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球气候变化导致干旱持续时间延长,降低了森林生产力。生物多样性被认为可以减轻干旱的影响,从而提高树木生长的稳定性。然而,在不同持续时间的干旱下,物种丰富度对树木生长稳定性的影响仍不确定。在此,我们利用全球 4072 个地点的树环数据,结合气候和植物丰富度数据,评估了物种丰富度对树木抵抗短期和长期干旱的影响。我们发现,在全球范围内,物种丰富度增强了树木对干旱的抵抗力,但削弱了树木对干旱的恢复力。与短期干旱相比,物种丰富度进一步提高了树木在长期干旱期间的生长速度,但却降低了之后的生长速度,从而对抵抗力和恢复力产生了更强的影响。此外,随着干旱程度的加剧和区域干旱水平的提高,物种丰富度在短期干旱下对抵抗力和恢复力的影响增强,但在长期干旱下这些趋势减弱甚至逆转。这些结果揭示了物种丰富度对树木生长对不同持续时间干旱的抵抗力和恢复力的全球性影响,并突出表明物种丰富度在抵抗长期干旱方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought.
The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Current usage of sounding rockets to study the upper atmosphere. QnAs with Scott E. Heatwole and Robert F. Pfaff. Correction for Lu et al., In situ electrogenerated Cu(III) triggers hydroxyl radical production on the Cu-Sb-SnO2 electrode for highly efficient water decontamination. Beyond Neyman-Pearson: E-values enable hypothesis testing with a data-driven alpha. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1