通过 Ru-S 电荷转移通道从纯水中进行高性能 H2 光合作用

Huiping Peng, Mingzi Sun, Fei Xue, Xiaozhi Liu, Shangheng Liu, Tang Yang, Lin Sun, Hongbo Geng, Dong Su, Bolong Huang*, Yong Xu* and Xiaoqing Huang*, 
{"title":"通过 Ru-S 电荷转移通道从纯水中进行高性能 H2 光合作用","authors":"Huiping Peng,&nbsp;Mingzi Sun,&nbsp;Fei Xue,&nbsp;Xiaozhi Liu,&nbsp;Shangheng Liu,&nbsp;Tang Yang,&nbsp;Lin Sun,&nbsp;Hongbo Geng,&nbsp;Dong Su,&nbsp;Bolong Huang*,&nbsp;Yong Xu* and Xiaoqing Huang*,&nbsp;","doi":"10.1021/prechem.4c0003510.1021/prechem.4c00035","DOIUrl":null,"url":null,"abstract":"<p >As a versatile energy carrier, H<sub>2</sub> is considered as one of the most promising sources of clean energy to tackle the current energy crisis and environmental concerns, which can be produced from photocatalytic water splitting. However, solar-driven photocatalytic H<sub>2</sub> production from pure water in the absence of sacrificial reagents remains a great challenge. Herein, we demonstrate that the incorporation of Ru single atoms (SAs) into ZnIn<sub>2</sub>S<sub>4</sub> (Ru-ZIS) can enhance the light absorption, reduce the energy barriers for water dissociation, and construct a channel (Ru–S) for separating photogenerated electron–hole pairs, as a result of a significantly enhanced photocatalytic water splitting process. Impressively, the productivity of H<sub>2</sub> reaches 735.2 μmol g<sup>–1</sup> h<sup>–1</sup> under visible light irradiation in the absence of sacrificial agents. The apparent quantum efficiency (AQE) for H<sub>2</sub> evolution reaches 7.5% at 420 nm, with a solar-to-hydrogen (STH) efficiency of 0.58%, which is much higher than the value of natural synthetic plants (∼0.10%). Moreover, Ru-ZIS exhibits steady productivity of H<sub>2</sub> even after exposure to ambient conditions for 330 days. This work provides a unique strategy for constructing charge transfer channels to promote the separation of photogenerated electron–hole pairs, which may motivate the fundamental researches on catalyst design for photocatalysis and beyond.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00035","citationCount":"0","resultStr":"{\"title\":\"High-Performance H2 Photosynthesis from Pure Water over Ru–S Charge Transfer Channels\",\"authors\":\"Huiping Peng,&nbsp;Mingzi Sun,&nbsp;Fei Xue,&nbsp;Xiaozhi Liu,&nbsp;Shangheng Liu,&nbsp;Tang Yang,&nbsp;Lin Sun,&nbsp;Hongbo Geng,&nbsp;Dong Su,&nbsp;Bolong Huang*,&nbsp;Yong Xu* and Xiaoqing Huang*,&nbsp;\",\"doi\":\"10.1021/prechem.4c0003510.1021/prechem.4c00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a versatile energy carrier, H<sub>2</sub> is considered as one of the most promising sources of clean energy to tackle the current energy crisis and environmental concerns, which can be produced from photocatalytic water splitting. However, solar-driven photocatalytic H<sub>2</sub> production from pure water in the absence of sacrificial reagents remains a great challenge. Herein, we demonstrate that the incorporation of Ru single atoms (SAs) into ZnIn<sub>2</sub>S<sub>4</sub> (Ru-ZIS) can enhance the light absorption, reduce the energy barriers for water dissociation, and construct a channel (Ru–S) for separating photogenerated electron–hole pairs, as a result of a significantly enhanced photocatalytic water splitting process. Impressively, the productivity of H<sub>2</sub> reaches 735.2 μmol g<sup>–1</sup> h<sup>–1</sup> under visible light irradiation in the absence of sacrificial agents. The apparent quantum efficiency (AQE) for H<sub>2</sub> evolution reaches 7.5% at 420 nm, with a solar-to-hydrogen (STH) efficiency of 0.58%, which is much higher than the value of natural synthetic plants (∼0.10%). Moreover, Ru-ZIS exhibits steady productivity of H<sub>2</sub> even after exposure to ambient conditions for 330 days. This work provides a unique strategy for constructing charge transfer channels to promote the separation of photogenerated electron–hole pairs, which may motivate the fundamental researches on catalyst design for photocatalysis and beyond.</p>\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/prechem.4c00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.4c00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为一种多功能的能源载体,H2 被认为是最有希望解决当前能源危机和环境问题的清洁能源之一,它可以通过光催化水分裂产生。然而,在没有牺牲试剂的情况下,利用太阳能驱动光催化从纯水中制取 H2 仍然是一个巨大的挑战。在此,我们证明了在 ZnIn2S4(Ru-ZIS)中加入 Ru 单原子(SAs)可增强光吸收、降低水解离的能量障碍,并构建一个用于分离光生电子-空穴对的通道(Ru-S),从而显著增强光催化水分裂过程。令人印象深刻的是,在没有牺牲剂的情况下,在可见光照射下,H2 的生产率达到 735.2 μmol g-1 h-1。在 420 纳米波长下,H2 演化的表观量子效率(AQE)达到 7.5%,太阳能转化为氢气的效率(STH)为 0.58%,远高于天然合成植物的值(0.10%)。此外,即使在环境条件下暴露 330 天,Ru-ZIS 也能稳定地产生 H2。这项工作为构建电荷转移通道以促进光生电子-空穴对的分离提供了一种独特的策略,可推动光催化催化剂设计及其他方面的基础研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Performance H2 Photosynthesis from Pure Water over Ru–S Charge Transfer Channels

As a versatile energy carrier, H2 is considered as one of the most promising sources of clean energy to tackle the current energy crisis and environmental concerns, which can be produced from photocatalytic water splitting. However, solar-driven photocatalytic H2 production from pure water in the absence of sacrificial reagents remains a great challenge. Herein, we demonstrate that the incorporation of Ru single atoms (SAs) into ZnIn2S4 (Ru-ZIS) can enhance the light absorption, reduce the energy barriers for water dissociation, and construct a channel (Ru–S) for separating photogenerated electron–hole pairs, as a result of a significantly enhanced photocatalytic water splitting process. Impressively, the productivity of H2 reaches 735.2 μmol g–1 h–1 under visible light irradiation in the absence of sacrificial agents. The apparent quantum efficiency (AQE) for H2 evolution reaches 7.5% at 420 nm, with a solar-to-hydrogen (STH) efficiency of 0.58%, which is much higher than the value of natural synthetic plants (∼0.10%). Moreover, Ru-ZIS exhibits steady productivity of H2 even after exposure to ambient conditions for 330 days. This work provides a unique strategy for constructing charge transfer channels to promote the separation of photogenerated electron–hole pairs, which may motivate the fundamental researches on catalyst design for photocatalysis and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Precision Chemistry for Two-Dimensional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1