用于甲烷热解的新型描述符驱动熔融合金设计

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-22 DOI:10.1021/acscatal.4c04480
Seung Ju Han, Jeong-Cheol Seo, Gyungah Park, Ju Ho Son, Yunjo Lee, Seok Ki Kim
{"title":"用于甲烷热解的新型描述符驱动熔融合金设计","authors":"Seung Ju Han, Jeong-Cheol Seo, Gyungah Park, Ju Ho Son, Yunjo Lee, Seok Ki Kim","doi":"10.1021/acscatal.4c04480","DOIUrl":null,"url":null,"abstract":"Clean hydrogen production via methane pyrolysis using molten metal alloy catalysts is an interesting approach. However, the high temperatures and dynamic conditions required for pyrolysis render <i>in situ</i> observation of the molten metal system difficult. In this study, we identified two descriptors (H* formation energy and solute metal diffusivity) based on <i>ab initio</i> molecular dynamics simulations to predict the catalytic activity of Bi-based binary alloys (M = Ni, Pt, Cu, Ag) in methane pyrolysis. The solute metals were active sites for strong hydrogen adsorption, whereas solute metal diffusivity determined the extent of its exposure on the surface of the molten metal bubbles. Based on these findings, we identified two ternary alloys (Bi–Ni–Cu and Bi–Ni–Mn) that are catalytically more active than the binary Bi–Ni alloy. This study promotes the theory-based screening of highly active alloy catalysts for methane pyrolysis, thus contributing to the advancement of hydrogen society.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Descriptor-Driven Design of Molten Alloys for Methane Pyrolysis\",\"authors\":\"Seung Ju Han, Jeong-Cheol Seo, Gyungah Park, Ju Ho Son, Yunjo Lee, Seok Ki Kim\",\"doi\":\"10.1021/acscatal.4c04480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clean hydrogen production via methane pyrolysis using molten metal alloy catalysts is an interesting approach. However, the high temperatures and dynamic conditions required for pyrolysis render <i>in situ</i> observation of the molten metal system difficult. In this study, we identified two descriptors (H* formation energy and solute metal diffusivity) based on <i>ab initio</i> molecular dynamics simulations to predict the catalytic activity of Bi-based binary alloys (M = Ni, Pt, Cu, Ag) in methane pyrolysis. The solute metals were active sites for strong hydrogen adsorption, whereas solute metal diffusivity determined the extent of its exposure on the surface of the molten metal bubbles. Based on these findings, we identified two ternary alloys (Bi–Ni–Cu and Bi–Ni–Mn) that are catalytically more active than the binary Bi–Ni alloy. This study promotes the theory-based screening of highly active alloy catalysts for methane pyrolysis, thus contributing to the advancement of hydrogen society.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c04480\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用熔融金属合金催化剂通过甲烷热解清洁制氢是一种有趣的方法。然而,由于热解所需的高温和动态条件,很难对熔融金属体系进行现场观测。在本研究中,我们根据 ab initio 分子动力学模拟确定了两个描述因子(H* 形成能和溶质金属扩散率),以预测 Bi 基二元合金(M = Ni、Pt、Cu、Ag)在甲烷热解中的催化活性。溶质金属是强氢吸附的活性位点,而溶质金属扩散性则决定了其在熔融金属气泡表面的暴露程度。基于这些发现,我们确定了两种三元合金(铋-镍-铜和铋-镍-锰),它们比二元铋-镍合金更具催化活性。这项研究促进了基于理论的甲烷热解高活性合金催化剂的筛选,从而为推动氢能社会的发展做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Descriptor-Driven Design of Molten Alloys for Methane Pyrolysis
Clean hydrogen production via methane pyrolysis using molten metal alloy catalysts is an interesting approach. However, the high temperatures and dynamic conditions required for pyrolysis render in situ observation of the molten metal system difficult. In this study, we identified two descriptors (H* formation energy and solute metal diffusivity) based on ab initio molecular dynamics simulations to predict the catalytic activity of Bi-based binary alloys (M = Ni, Pt, Cu, Ag) in methane pyrolysis. The solute metals were active sites for strong hydrogen adsorption, whereas solute metal diffusivity determined the extent of its exposure on the surface of the molten metal bubbles. Based on these findings, we identified two ternary alloys (Bi–Ni–Cu and Bi–Ni–Mn) that are catalytically more active than the binary Bi–Ni alloy. This study promotes the theory-based screening of highly active alloy catalysts for methane pyrolysis, thus contributing to the advancement of hydrogen society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Converting the 4-Flash Photosynthetic O2 Evolution Cycle to a 2-Flash Catalytic Cycle with a Simple Cocatalyst: Counting Electrons and Holes Directly and Transparently Initiation of the Phillips Cr(VI) Catalyst by Alkenes Nonmetal Plasmon-Induced Carrier Backflow and Prolonged Lifetime for CO2 Photoreduction Unveiling Plasmon-Induced Suzuki–Miyaura Reactions on Silver Nanoparticles via Raman Spectroscopy Multi-Band Centre Co-Tailoring of Iridium Diphosphide Nanoclusters Motivating Industrial Current Density Hydrogen Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1