Marek Kokot, Roozbeh Dehghannasiri, Tavor Baharav, Julia Salzman, Sebastian Deorowicz
{"title":"利用 SPLASH2 从原始测序读数中进行可扩展的无监督发现","authors":"Marek Kokot, Roozbeh Dehghannasiri, Tavor Baharav, Julia Salzman, Sebastian Deorowicz","doi":"10.1038/s41587-024-02381-2","DOIUrl":null,"url":null,"abstract":"<p>We introduce SPLASH2, a fast, scalable implementation of SPLASH based on an efficient <i>k</i>-mer counting approach for regulated sequence variation detection in massive datasets from a wide range of sequencing technologies and biological contexts. We demonstrate biological discovery by SPLASH2 in single-cell RNA sequencing (RNA-seq) data and in bulk RNA-seq data from the Cancer Cell Line Encyclopedia, including unannotated alternative splicing in cancer transcriptomes and sensitive detection of circular RNA.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":null,"pages":null},"PeriodicalIF":33.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable and unsupervised discovery from raw sequencing reads using SPLASH2\",\"authors\":\"Marek Kokot, Roozbeh Dehghannasiri, Tavor Baharav, Julia Salzman, Sebastian Deorowicz\",\"doi\":\"10.1038/s41587-024-02381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce SPLASH2, a fast, scalable implementation of SPLASH based on an efficient <i>k</i>-mer counting approach for regulated sequence variation detection in massive datasets from a wide range of sequencing technologies and biological contexts. We demonstrate biological discovery by SPLASH2 in single-cell RNA sequencing (RNA-seq) data and in bulk RNA-seq data from the Cancer Cell Line Encyclopedia, including unannotated alternative splicing in cancer transcriptomes and sensitive detection of circular RNA.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-024-02381-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02381-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Scalable and unsupervised discovery from raw sequencing reads using SPLASH2
We introduce SPLASH2, a fast, scalable implementation of SPLASH based on an efficient k-mer counting approach for regulated sequence variation detection in massive datasets from a wide range of sequencing technologies and biological contexts. We demonstrate biological discovery by SPLASH2 in single-cell RNA sequencing (RNA-seq) data and in bulk RNA-seq data from the Cancer Cell Line Encyclopedia, including unannotated alternative splicing in cancer transcriptomes and sensitive detection of circular RNA.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.