Vivian Delcourt, Justine Pinetre, Benjamin Chabot, Agnès Barnabé, Marie Cacault, Benoit Loup, François Becher, François Fenaille, Marie-Agnès Popot, Patrice Garcia, Ludovic Bailly-Chouriberry
{"title":"利用捕获离子迁移率四极杆-飞行时间质谱仪进行高通量马匹兴奋剂控制:应用 dia/slice/prmPASEF 对单克隆抗体进行长期检测的技术考虑。","authors":"Vivian Delcourt, Justine Pinetre, Benjamin Chabot, Agnès Barnabé, Marie Cacault, Benoit Loup, François Becher, François Fenaille, Marie-Agnès Popot, Patrice Garcia, Ludovic Bailly-Chouriberry","doi":"10.1002/dta.3797","DOIUrl":null,"url":null,"abstract":"<p><p>Data-independent acquisition (DIA) methods employing a scanning quadrupole were recently described across multiple platforms. These strategies display remarkable performances in untargeted proteomics studies thanks to rapid duty cycles, leading to ultrashort liquid chromatography gradients while maintaining enough data points per peaks when coupled to fast-scanning mass analyzer. In this article, we perform the evaluation of three data acquisition strategies named diaPASEF,slicePASEF, and prmPASEF on a trapped ion mobility spectrometry quadrupole-time-of-flight (TIMS-Q-TOF) mass spectrometer for high-throughput doping control screening analyses. We report that slicePASEF outperforms diaPASEF and is almost as sensitive as prmPASEF in detecting humanized monoclonal antibodies for several weeks in equine plasma after administration. We observed that diaPASEF is still providing the best performances in untargeted proteomics studies employing high amounts of input materials, which is linked with the high complexity of slicePASEF data and current processing algorithms.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Equine Doping Controls on a Trapped Ion Mobility Quadrupole-Time-of-Flight Mass Spectrometer: Technical Considerations of dia/slice/prmPASEF Applied to the Long-Term Detection of Monoclonal Antibodies.\",\"authors\":\"Vivian Delcourt, Justine Pinetre, Benjamin Chabot, Agnès Barnabé, Marie Cacault, Benoit Loup, François Becher, François Fenaille, Marie-Agnès Popot, Patrice Garcia, Ludovic Bailly-Chouriberry\",\"doi\":\"10.1002/dta.3797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-independent acquisition (DIA) methods employing a scanning quadrupole were recently described across multiple platforms. These strategies display remarkable performances in untargeted proteomics studies thanks to rapid duty cycles, leading to ultrashort liquid chromatography gradients while maintaining enough data points per peaks when coupled to fast-scanning mass analyzer. In this article, we perform the evaluation of three data acquisition strategies named diaPASEF,slicePASEF, and prmPASEF on a trapped ion mobility spectrometry quadrupole-time-of-flight (TIMS-Q-TOF) mass spectrometer for high-throughput doping control screening analyses. We report that slicePASEF outperforms diaPASEF and is almost as sensitive as prmPASEF in detecting humanized monoclonal antibodies for several weeks in equine plasma after administration. We observed that diaPASEF is still providing the best performances in untargeted proteomics studies employing high amounts of input materials, which is linked with the high complexity of slicePASEF data and current processing algorithms.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3797\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3797","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-Throughput Equine Doping Controls on a Trapped Ion Mobility Quadrupole-Time-of-Flight Mass Spectrometer: Technical Considerations of dia/slice/prmPASEF Applied to the Long-Term Detection of Monoclonal Antibodies.
Data-independent acquisition (DIA) methods employing a scanning quadrupole were recently described across multiple platforms. These strategies display remarkable performances in untargeted proteomics studies thanks to rapid duty cycles, leading to ultrashort liquid chromatography gradients while maintaining enough data points per peaks when coupled to fast-scanning mass analyzer. In this article, we perform the evaluation of three data acquisition strategies named diaPASEF,slicePASEF, and prmPASEF on a trapped ion mobility spectrometry quadrupole-time-of-flight (TIMS-Q-TOF) mass spectrometer for high-throughput doping control screening analyses. We report that slicePASEF outperforms diaPASEF and is almost as sensitive as prmPASEF in detecting humanized monoclonal antibodies for several weeks in equine plasma after administration. We observed that diaPASEF is still providing the best performances in untargeted proteomics studies employing high amounts of input materials, which is linked with the high complexity of slicePASEF data and current processing algorithms.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.