Alistair D Calder, Jeremy Allgrove, Jakob Höppner, Moira Cheung, Saji Alexander, Lorenzo Garagnani, Rajesh Thakker, Harald Jüppner, Thomas J Gardella, Muriel Holder-Espinasse
{"title":"因新型甲状旁腺激素受体1型突变而导致甲状旁腺激素抵抗的艾肯综合征:临床特征和功能分析。","authors":"Alistair D Calder, Jeremy Allgrove, Jakob Höppner, Moira Cheung, Saji Alexander, Lorenzo Garagnani, Rajesh Thakker, Harald Jüppner, Thomas J Gardella, Muriel Holder-Espinasse","doi":"10.1093/jbmr/zjae148","DOIUrl":null,"url":null,"abstract":"<p><p>We report on 2 patients of East African ancestry with the same novel homozygous variant in the parathyroid hormone receptor type 1 (PTH1R). Both patients shared skeletal features, including brachydactyly, extensive metacarpal pseudo-epiphyses, elongated cone-shaped epiphyses, ischiopubic hypoplasia, and deficient sacral ossification, suggestive of Eiken syndrome. Strikingly, both patients exhibited clinically manifest parathyroid hormone (PTH) resistance with hypocalcemia and elevated serum phosphate levels. These laboratory and clinical abnormalities initially suggested pseudohypoparathyroidism, which is typically associated with GNAS abnormalities. In both patients, however, a homozygous novel PTH1R variant was identified (c.710 T > A; p.IIe237Asn, p.I237N) that is located in the second transmembrane helical domain. Previously, others have reported a patient with a nearby PTH1R mutation (D241E) who presented with similar clinical features (eg, delayed bone mineralization as well as clinical PTH resistance). Functional analysis of the effects of both novel PTH1R variants (I237N- and D241E-PTH1R) in HEK293 reporter cells transfected with plasmid DNA encoding the wild-type or mutant PTH1Rs demonstrated increased basal cAMP signaling for both variants, with relative blunting of responses to both PTH and PTH-related peptide (PTHrP) ligands. The clinical presentation of PTH resistance and delayed bone mineralization combined with the functional properties of the mutant PTH1Rs suggest that this form of Eiken syndrome results from alterations in PTH1R-mediated signaling in response to both canonical ligands, PTH and PTHrP.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1596-1605"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eiken syndrome with parathyroid hormone resistance due to a novel parathyroid hormone receptor type 1 mutation: clinical features and functional analysis.\",\"authors\":\"Alistair D Calder, Jeremy Allgrove, Jakob Höppner, Moira Cheung, Saji Alexander, Lorenzo Garagnani, Rajesh Thakker, Harald Jüppner, Thomas J Gardella, Muriel Holder-Espinasse\",\"doi\":\"10.1093/jbmr/zjae148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report on 2 patients of East African ancestry with the same novel homozygous variant in the parathyroid hormone receptor type 1 (PTH1R). Both patients shared skeletal features, including brachydactyly, extensive metacarpal pseudo-epiphyses, elongated cone-shaped epiphyses, ischiopubic hypoplasia, and deficient sacral ossification, suggestive of Eiken syndrome. Strikingly, both patients exhibited clinically manifest parathyroid hormone (PTH) resistance with hypocalcemia and elevated serum phosphate levels. These laboratory and clinical abnormalities initially suggested pseudohypoparathyroidism, which is typically associated with GNAS abnormalities. In both patients, however, a homozygous novel PTH1R variant was identified (c.710 T > A; p.IIe237Asn, p.I237N) that is located in the second transmembrane helical domain. Previously, others have reported a patient with a nearby PTH1R mutation (D241E) who presented with similar clinical features (eg, delayed bone mineralization as well as clinical PTH resistance). Functional analysis of the effects of both novel PTH1R variants (I237N- and D241E-PTH1R) in HEK293 reporter cells transfected with plasmid DNA encoding the wild-type or mutant PTH1Rs demonstrated increased basal cAMP signaling for both variants, with relative blunting of responses to both PTH and PTH-related peptide (PTHrP) ligands. The clinical presentation of PTH resistance and delayed bone mineralization combined with the functional properties of the mutant PTH1Rs suggest that this form of Eiken syndrome results from alterations in PTH1R-mediated signaling in response to both canonical ligands, PTH and PTHrP.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"1596-1605\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae148\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae148","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Eiken syndrome with parathyroid hormone resistance due to a novel parathyroid hormone receptor type 1 mutation: clinical features and functional analysis.
We report on 2 patients of East African ancestry with the same novel homozygous variant in the parathyroid hormone receptor type 1 (PTH1R). Both patients shared skeletal features, including brachydactyly, extensive metacarpal pseudo-epiphyses, elongated cone-shaped epiphyses, ischiopubic hypoplasia, and deficient sacral ossification, suggestive of Eiken syndrome. Strikingly, both patients exhibited clinically manifest parathyroid hormone (PTH) resistance with hypocalcemia and elevated serum phosphate levels. These laboratory and clinical abnormalities initially suggested pseudohypoparathyroidism, which is typically associated with GNAS abnormalities. In both patients, however, a homozygous novel PTH1R variant was identified (c.710 T > A; p.IIe237Asn, p.I237N) that is located in the second transmembrane helical domain. Previously, others have reported a patient with a nearby PTH1R mutation (D241E) who presented with similar clinical features (eg, delayed bone mineralization as well as clinical PTH resistance). Functional analysis of the effects of both novel PTH1R variants (I237N- and D241E-PTH1R) in HEK293 reporter cells transfected with plasmid DNA encoding the wild-type or mutant PTH1Rs demonstrated increased basal cAMP signaling for both variants, with relative blunting of responses to both PTH and PTH-related peptide (PTHrP) ligands. The clinical presentation of PTH resistance and delayed bone mineralization combined with the functional properties of the mutant PTH1Rs suggest that this form of Eiken syndrome results from alterations in PTH1R-mediated signaling in response to both canonical ligands, PTH and PTHrP.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.