文本挖掘和计算化学揭示了激光解吸/电离技术在小分子中的应用趋势。

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-10-02 Epub Date: 2024-09-23 DOI:10.1021/jasms.4c00293
Nina P Bergman, Jonas Bergquist, Mikael Hedeland, Magnus Palmblad
{"title":"文本挖掘和计算化学揭示了激光解吸/电离技术在小分子中的应用趋势。","authors":"Nina P Bergman, Jonas Bergquist, Mikael Hedeland, Magnus Palmblad","doi":"10.1021/jasms.4c00293","DOIUrl":null,"url":null,"abstract":"<p><p>Continued development of laser desorption/ionization (LDI) since its inception in the 1960s has produced an explosion of soft ionization techniques, where ionization is assisted by the physical or chemical properties of a structure or matrix. While many of these techniques have primarily been used to ionize large biomolecules, including proteins, some have recently seen increasing applications to small molecules such as pharmaceuticals. Small molecules pose particular challenges for LDI techniques, including interference from the matrix or support in the low mass range. To investigate trends in the application of soft LDI techniques to small molecules, we combined text mining and computational chemistry, looking specifically at matrix substances, analyte properties, and the research domain. In addition to making visible the history of LDI techniques, the results may inform the choice of method and suggest new avenues of method development. All software and collected data are freely available on GitHub (https://github.com/ReinV/SCOPE), VOSviewer (https://www.vosviewer.com), and OSF (https://osf.io/zkmua/).</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Text Mining and Computational Chemistry Reveal Trends in Applications of Laser Desorption/Ionization Techniques to Small Molecules.\",\"authors\":\"Nina P Bergman, Jonas Bergquist, Mikael Hedeland, Magnus Palmblad\",\"doi\":\"10.1021/jasms.4c00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continued development of laser desorption/ionization (LDI) since its inception in the 1960s has produced an explosion of soft ionization techniques, where ionization is assisted by the physical or chemical properties of a structure or matrix. While many of these techniques have primarily been used to ionize large biomolecules, including proteins, some have recently seen increasing applications to small molecules such as pharmaceuticals. Small molecules pose particular challenges for LDI techniques, including interference from the matrix or support in the low mass range. To investigate trends in the application of soft LDI techniques to small molecules, we combined text mining and computational chemistry, looking specifically at matrix substances, analyte properties, and the research domain. In addition to making visible the history of LDI techniques, the results may inform the choice of method and suggest new avenues of method development. All software and collected data are freely available on GitHub (https://github.com/ReinV/SCOPE), VOSviewer (https://www.vosviewer.com), and OSF (https://osf.io/zkmua/).</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00293\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

自 20 世纪 60 年代激光解吸/电离技术(LDI)问世以来,该技术不断发展,产生了大量软电离技术,这些技术利用结构或基质的物理或化学特性辅助电离。虽然其中许多技术主要用于电离包括蛋白质在内的大型生物分子,但最近一些技术也越来越多地应用于药物等小分子方面。小分子对 LDI 技术提出了特殊的挑战,包括在低质量范围内基质或支持物的干扰。为了研究软 LDI 技术在小分子中的应用趋势,我们结合了文本挖掘和计算化学,具体研究了基质物质、分析物特性和研究领域。除了揭示 LDI 技术的历史,研究结果还可为方法选择提供参考,并为方法开发提供新途径。所有软件和收集的数据均可在 GitHub (https://github.com/ReinV/SCOPE)、VOSviewer (https://www.vosviewer.com) 和 OSF (https://osf.io/zkmua/) 上免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text Mining and Computational Chemistry Reveal Trends in Applications of Laser Desorption/Ionization Techniques to Small Molecules.

Continued development of laser desorption/ionization (LDI) since its inception in the 1960s has produced an explosion of soft ionization techniques, where ionization is assisted by the physical or chemical properties of a structure or matrix. While many of these techniques have primarily been used to ionize large biomolecules, including proteins, some have recently seen increasing applications to small molecules such as pharmaceuticals. Small molecules pose particular challenges for LDI techniques, including interference from the matrix or support in the low mass range. To investigate trends in the application of soft LDI techniques to small molecules, we combined text mining and computational chemistry, looking specifically at matrix substances, analyte properties, and the research domain. In addition to making visible the history of LDI techniques, the results may inform the choice of method and suggest new avenues of method development. All software and collected data are freely available on GitHub (https://github.com/ReinV/SCOPE), VOSviewer (https://www.vosviewer.com), and OSF (https://osf.io/zkmua/).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. Improved Rapid Equilibrium Dialysis-Mass Spectrometry (RED-MS) Method for Measuring Small Molecule-Protein Complex Binding Affinities in Solution. Quantitative Analysis of Drugs in a Mimetic Tissue Model Using Nano-DESI on a Triple Quadrupole Mass Spectrometer. Development of a Novel Label-Free Subunit HILIC-MS Method for Domain-Specific Free Thiol Identification and Quantitation in Therapeutic Monoclonal Antibodies. Single Cell MALDI-MSI Analysis of Lipids and Proteins within a Replicative Senescence Fibroblast Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1