{"title":"乙氧基喹通过抑制 HSP90 来介导 BLM-CIA 小鼠的肺纤维化和细胞免疫。","authors":"Jie-Rou Huang, Liang Chen, Chao-Qian Li","doi":"10.17219/acem/186365","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) are characterized by severe pulmonary fibrosis and immune dysregulation. Heat shock protein 90 (HSP90) is involved in the progression of pulmonary fibrosis and the immune response.</p><p><strong>Objectives: </strong>This study aimed to explore whether HSP90 regulates the development of RA-ILD and its underlying mechanism.</p><p><strong>Material and methods: </strong>In vivo, collagen-induced arthritis (CIA)-mice were treated with bleomycin (BLM) to establish an arthritic mouse model of pulmonary fibrosis. In vitro, human lung fibroblast 1 (HLF1) was exposed to transforming growth factor beta 1 (TGF-β1) to simulate an RA-ILD model. The RA-ILD models were treated with the HSP90 inhibitor ethoxyquin (EQ) to explore the potential mechanism of HSP90 in RA-ILD. Histopathological analysis was performed, and pulmonary fibrosis was evaluated. The differentiation of M1/M2 macrophages and Th1/Th17/Treg cells was assessed. The role of the TGF-β/Smad2/3 pathway in EQ-mediated RA-ILD progression was also explored.</p><p><strong>Results: </strong>HSP90α and HSP90β were upregulated in the RA-ILD models. Ethoxyquin mitigated arthritis in BLM-CIA mice, and reduced the expression of alpha-smooth muscle actin (α-SMA), collagen I (Col-1) and fibronectin (FN), as well as hydroxyproline content, thereby relieving pulmonary fibrosis. In addition, EQ increased M1 macrophages and inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-α) levels; conversely, EQ decreased M2 macrophages and vascular endothelial growth factor (VEGF)-A and TGF-β1 contents. It also decreased Th17 (interleukin (IL)-17) while increasing Th1 (interferon gamma (IFN-γ)) and Treg (Foxp3), and restricted the expression of transforming growth factor beta type receptor I and II (TGF-βRI and TGF-βRII) and the phosphorylation of Smad2 and Smad3.</p><p><strong>Conclusions: </strong>This study revealed that EQ regulated pulmonary fibrosis and cellular immunity by inhibiting HSP90, appearing to act through the TGF-β/Smad2/3 pathway. These findings suggest that EQ holds potential as a therapeutic agent for treating RA-ILD.</p>","PeriodicalId":7306,"journal":{"name":"Advances in Clinical and Experimental Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethoxyquin mediates lung fibrosis and cellular immunity in BLM-CIA mice by inhibiting HSP90.\",\"authors\":\"Jie-Rou Huang, Liang Chen, Chao-Qian Li\",\"doi\":\"10.17219/acem/186365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) are characterized by severe pulmonary fibrosis and immune dysregulation. Heat shock protein 90 (HSP90) is involved in the progression of pulmonary fibrosis and the immune response.</p><p><strong>Objectives: </strong>This study aimed to explore whether HSP90 regulates the development of RA-ILD and its underlying mechanism.</p><p><strong>Material and methods: </strong>In vivo, collagen-induced arthritis (CIA)-mice were treated with bleomycin (BLM) to establish an arthritic mouse model of pulmonary fibrosis. In vitro, human lung fibroblast 1 (HLF1) was exposed to transforming growth factor beta 1 (TGF-β1) to simulate an RA-ILD model. The RA-ILD models were treated with the HSP90 inhibitor ethoxyquin (EQ) to explore the potential mechanism of HSP90 in RA-ILD. Histopathological analysis was performed, and pulmonary fibrosis was evaluated. The differentiation of M1/M2 macrophages and Th1/Th17/Treg cells was assessed. The role of the TGF-β/Smad2/3 pathway in EQ-mediated RA-ILD progression was also explored.</p><p><strong>Results: </strong>HSP90α and HSP90β were upregulated in the RA-ILD models. Ethoxyquin mitigated arthritis in BLM-CIA mice, and reduced the expression of alpha-smooth muscle actin (α-SMA), collagen I (Col-1) and fibronectin (FN), as well as hydroxyproline content, thereby relieving pulmonary fibrosis. In addition, EQ increased M1 macrophages and inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-α) levels; conversely, EQ decreased M2 macrophages and vascular endothelial growth factor (VEGF)-A and TGF-β1 contents. It also decreased Th17 (interleukin (IL)-17) while increasing Th1 (interferon gamma (IFN-γ)) and Treg (Foxp3), and restricted the expression of transforming growth factor beta type receptor I and II (TGF-βRI and TGF-βRII) and the phosphorylation of Smad2 and Smad3.</p><p><strong>Conclusions: </strong>This study revealed that EQ regulated pulmonary fibrosis and cellular immunity by inhibiting HSP90, appearing to act through the TGF-β/Smad2/3 pathway. These findings suggest that EQ holds potential as a therapeutic agent for treating RA-ILD.</p>\",\"PeriodicalId\":7306,\"journal\":{\"name\":\"Advances in Clinical and Experimental Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17219/acem/186365\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17219/acem/186365","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Ethoxyquin mediates lung fibrosis and cellular immunity in BLM-CIA mice by inhibiting HSP90.
Background: Patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) are characterized by severe pulmonary fibrosis and immune dysregulation. Heat shock protein 90 (HSP90) is involved in the progression of pulmonary fibrosis and the immune response.
Objectives: This study aimed to explore whether HSP90 regulates the development of RA-ILD and its underlying mechanism.
Material and methods: In vivo, collagen-induced arthritis (CIA)-mice were treated with bleomycin (BLM) to establish an arthritic mouse model of pulmonary fibrosis. In vitro, human lung fibroblast 1 (HLF1) was exposed to transforming growth factor beta 1 (TGF-β1) to simulate an RA-ILD model. The RA-ILD models were treated with the HSP90 inhibitor ethoxyquin (EQ) to explore the potential mechanism of HSP90 in RA-ILD. Histopathological analysis was performed, and pulmonary fibrosis was evaluated. The differentiation of M1/M2 macrophages and Th1/Th17/Treg cells was assessed. The role of the TGF-β/Smad2/3 pathway in EQ-mediated RA-ILD progression was also explored.
Results: HSP90α and HSP90β were upregulated in the RA-ILD models. Ethoxyquin mitigated arthritis in BLM-CIA mice, and reduced the expression of alpha-smooth muscle actin (α-SMA), collagen I (Col-1) and fibronectin (FN), as well as hydroxyproline content, thereby relieving pulmonary fibrosis. In addition, EQ increased M1 macrophages and inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-α) levels; conversely, EQ decreased M2 macrophages and vascular endothelial growth factor (VEGF)-A and TGF-β1 contents. It also decreased Th17 (interleukin (IL)-17) while increasing Th1 (interferon gamma (IFN-γ)) and Treg (Foxp3), and restricted the expression of transforming growth factor beta type receptor I and II (TGF-βRI and TGF-βRII) and the phosphorylation of Smad2 and Smad3.
Conclusions: This study revealed that EQ regulated pulmonary fibrosis and cellular immunity by inhibiting HSP90, appearing to act through the TGF-β/Smad2/3 pathway. These findings suggest that EQ holds potential as a therapeutic agent for treating RA-ILD.
期刊介绍:
Advances in Clinical and Experimental Medicine has been published by the Wroclaw Medical University since 1992. Establishing the medical journal was the idea of Prof. Bogumił Halawa, Chair of the Department of Cardiology, and was fully supported by the Rector of Wroclaw Medical University, Prof. Zbigniew Knapik. Prof. Halawa was also the first editor-in-chief, between 1992-1997. The journal, then entitled "Postępy Medycyny Klinicznej i Doświadczalnej", appeared quarterly.
Prof. Leszek Paradowski was editor-in-chief from 1997-1999. In 1998 he initiated alterations in the profile and cover design of the journal which were accepted by the Editorial Board. The title was changed to Advances in Clinical and Experimental Medicine. Articles in English were welcomed. A number of outstanding representatives of medical science from Poland and abroad were invited to participate in the newly established International Editorial Staff.
Prof. Antonina Harłozińska-Szmyrka was editor-in-chief in years 2000-2005, in years 2006-2007 once again prof. Leszek Paradowski and prof. Maria Podolak-Dawidziak was editor-in-chief in years 2008-2016. Since 2017 the editor-in chief is prof. Maciej Bagłaj.
Since July 2005, original papers have been published only in English. Case reports are no longer accepted. The manuscripts are reviewed by two independent reviewers and a statistical reviewer, and English texts are proofread by a native speaker.
The journal has been indexed in several databases: Scopus, Ulrich’sTM International Periodicals Directory, Index Copernicus and since 2007 in Thomson Reuters databases: Science Citation Index Expanded i Journal Citation Reports/Science Edition.
In 2010 the journal obtained Impact Factor which is now 1.179 pts. Articles published in the journal are worth 15 points among Polish journals according to the Polish Committee for Scientific Research and 169.43 points according to the Index Copernicus.
Since November 7, 2012, Advances in Clinical and Experimental Medicine has been indexed and included in National Library of Medicine’s MEDLINE database. English abstracts printed in the journal are included and searchable using PubMed http://www.ncbi.nlm.nih.gov/pubmed.