{"title":"胞苷脱氨酶通过 NFκB 信号调节上皮-间质转化,从而增强肝癌的侵袭能力","authors":"Chia-Jung Liao, Yang-Hsiang Lin, Huei-Tzu Chien, Yi-Wen Wang, Tzu-Kang Lin, Chau-Ting Yeh, Kwang-Huei Lin","doi":"10.1016/j.bj.2024.100789","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer metastasis is the leading cause of cancer-related deaths, underscoring the importance of understanding its underlying mechanisms. Hepatocellular carcinoma (HCC), a highly malignant type of cancer, was selected as our research model.</p><p><strong>Material and methods: </strong>We aimed to develop high-metastatic cell lines using in vitro and in vivo selection strategies and identify critical metastasis-related genes through microarray analyses by comparing them with parental cells.</p><p><strong>Results: </strong>Our results showed that the high-metastatic cell lines exhibited significantly stronger invasion abilities than parental cells. Microarray analyses identified cytidine deaminase (CDA), a gene associated with systemic chemotherapy resistance, as one of the overexpressed genes in the high-metastatic cells. Data analysis from The Cancer Genome Atlas Program revealed that while CDA is downregulated in HCC, patients with high CDA expression tend to have poorer prognoses. Cell models confirmed that CDA overexpression enhances cell migration and invasion, whereas CDA knockdown inhibits these abilities. Investigating the key molecules involved in the epithelial-mesenchymal transition (EMT), we found that CDA overexpression increases the expression of fascin, N-cadherin, β-catenin, and snail while decreasing E-cadherin expression. Conversely, CDA knockdown produced opposite results. Additionally, we discovered that CDA regulates NF-κB signaling, which controls the expression of N-cadherin, thereby promoting the invasion capability of HCC cells.</p><p><strong>Conclusions: </strong>We isolated highly metastatic cells and identified potential HCC metastasis-related genes. CDA promotes cell invasion by regulating EMT through the NF-κB pathway. Future studies are warranted to explore the potential of CDA as a biomarker for prognosis and therapeutic decision-making.</p>","PeriodicalId":8934,"journal":{"name":"Biomedical Journal","volume":" ","pages":"100789"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytidine Deaminase Enhances Liver Cancer Invasion by Modulating Epithelial-Mesenchymal Transition via NFκB Signaling.\",\"authors\":\"Chia-Jung Liao, Yang-Hsiang Lin, Huei-Tzu Chien, Yi-Wen Wang, Tzu-Kang Lin, Chau-Ting Yeh, Kwang-Huei Lin\",\"doi\":\"10.1016/j.bj.2024.100789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer metastasis is the leading cause of cancer-related deaths, underscoring the importance of understanding its underlying mechanisms. Hepatocellular carcinoma (HCC), a highly malignant type of cancer, was selected as our research model.</p><p><strong>Material and methods: </strong>We aimed to develop high-metastatic cell lines using in vitro and in vivo selection strategies and identify critical metastasis-related genes through microarray analyses by comparing them with parental cells.</p><p><strong>Results: </strong>Our results showed that the high-metastatic cell lines exhibited significantly stronger invasion abilities than parental cells. Microarray analyses identified cytidine deaminase (CDA), a gene associated with systemic chemotherapy resistance, as one of the overexpressed genes in the high-metastatic cells. Data analysis from The Cancer Genome Atlas Program revealed that while CDA is downregulated in HCC, patients with high CDA expression tend to have poorer prognoses. Cell models confirmed that CDA overexpression enhances cell migration and invasion, whereas CDA knockdown inhibits these abilities. Investigating the key molecules involved in the epithelial-mesenchymal transition (EMT), we found that CDA overexpression increases the expression of fascin, N-cadherin, β-catenin, and snail while decreasing E-cadherin expression. Conversely, CDA knockdown produced opposite results. Additionally, we discovered that CDA regulates NF-κB signaling, which controls the expression of N-cadherin, thereby promoting the invasion capability of HCC cells.</p><p><strong>Conclusions: </strong>We isolated highly metastatic cells and identified potential HCC metastasis-related genes. CDA promotes cell invasion by regulating EMT through the NF-κB pathway. Future studies are warranted to explore the potential of CDA as a biomarker for prognosis and therapeutic decision-making.</p>\",\"PeriodicalId\":8934,\"journal\":{\"name\":\"Biomedical Journal\",\"volume\":\" \",\"pages\":\"100789\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bj.2024.100789\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bj.2024.100789","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cytidine Deaminase Enhances Liver Cancer Invasion by Modulating Epithelial-Mesenchymal Transition via NFκB Signaling.
Background: Cancer metastasis is the leading cause of cancer-related deaths, underscoring the importance of understanding its underlying mechanisms. Hepatocellular carcinoma (HCC), a highly malignant type of cancer, was selected as our research model.
Material and methods: We aimed to develop high-metastatic cell lines using in vitro and in vivo selection strategies and identify critical metastasis-related genes through microarray analyses by comparing them with parental cells.
Results: Our results showed that the high-metastatic cell lines exhibited significantly stronger invasion abilities than parental cells. Microarray analyses identified cytidine deaminase (CDA), a gene associated with systemic chemotherapy resistance, as one of the overexpressed genes in the high-metastatic cells. Data analysis from The Cancer Genome Atlas Program revealed that while CDA is downregulated in HCC, patients with high CDA expression tend to have poorer prognoses. Cell models confirmed that CDA overexpression enhances cell migration and invasion, whereas CDA knockdown inhibits these abilities. Investigating the key molecules involved in the epithelial-mesenchymal transition (EMT), we found that CDA overexpression increases the expression of fascin, N-cadherin, β-catenin, and snail while decreasing E-cadherin expression. Conversely, CDA knockdown produced opposite results. Additionally, we discovered that CDA regulates NF-κB signaling, which controls the expression of N-cadherin, thereby promoting the invasion capability of HCC cells.
Conclusions: We isolated highly metastatic cells and identified potential HCC metastasis-related genes. CDA promotes cell invasion by regulating EMT through the NF-κB pathway. Future studies are warranted to explore the potential of CDA as a biomarker for prognosis and therapeutic decision-making.
期刊介绍:
Biomedical Journal publishes 6 peer-reviewed issues per year in all fields of clinical and biomedical sciences for an internationally diverse authorship. Unlike most open access journals, which are free to readers but not authors, Biomedical Journal does not charge for subscription, submission, processing or publication of manuscripts, nor for color reproduction of photographs.
Clinical studies, accounts of clinical trials, biomarker studies, and characterization of human pathogens are within the scope of the journal, as well as basic studies in model species such as Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealing the function of molecules, cells, and tissues relevant for human health. However, articles on other species can be published if they contribute to our understanding of basic mechanisms of biology.
A highly-cited international editorial board assures timely publication of manuscripts. Reviews on recent progress in biomedical sciences are commissioned by the editors.