促进肿瘤生长的分子轴CircMAPKBP1/miR-17-3p/TGFβ2激活自噬通路,驱动舌鳞状细胞癌的顺铂化疗抗性

IF 9.1 1区 医学 Q1 ONCOLOGY Cancer letters Pub Date : 2024-09-12 DOI:10.1016/j.canlet.2024.217230
{"title":"促进肿瘤生长的分子轴CircMAPKBP1/miR-17-3p/TGFβ2激活自噬通路,驱动舌鳞状细胞癌的顺铂化疗抗性","authors":"","doi":"10.1016/j.canlet.2024.217230","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum-based chemotherapy is the first-line treatment for tongue squamous cell carcinoma (TSCC), but most patients rapidly develop resistance. Circular RNAs (circRNAs) are a class of critical regulators in the pathogenesis of several tumors, but their role in cisplatin resistance in TSCC has not been fully elucidated. Here we found that circMAPKBP1 was enriched in cisplatin resistant TSCC cells and was closely associated with enhanced autophagic activity. Functionally, silencing circMAPKBP1 significantly restored the chemosensitivity of cisplatin-resistant TSCC cells both in vitro and in vivo by suppressing autophagy. Mechanistically, circMAPKBP1 enhanced cisplatin sensitivity through the miR-17-3p/TGFβ2 axis by activating autophagy pathway. Data from clinical studies revealed that high expression of circMAPKBP1 and TGFβ2 was closely linked to a poor outcome in TSCC patients. We thus concluded that circMAPKBP1 is a tumor promoting factor and confers cisplatin sensitivity by activating the miR-17-3p/TGFβ2 axis-mediated autophagy. We propose that circMAPKBP1 may be a potential therapeutic target for TSCC.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tumor-promotional molecular axis CircMAPKBP1/miR-17-3p/TGFβ2 activates autophagy pathway to drive tongue squamous cell carcinoma cisplatin chemoresistance\",\"authors\":\"\",\"doi\":\"10.1016/j.canlet.2024.217230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Platinum-based chemotherapy is the first-line treatment for tongue squamous cell carcinoma (TSCC), but most patients rapidly develop resistance. Circular RNAs (circRNAs) are a class of critical regulators in the pathogenesis of several tumors, but their role in cisplatin resistance in TSCC has not been fully elucidated. Here we found that circMAPKBP1 was enriched in cisplatin resistant TSCC cells and was closely associated with enhanced autophagic activity. Functionally, silencing circMAPKBP1 significantly restored the chemosensitivity of cisplatin-resistant TSCC cells both in vitro and in vivo by suppressing autophagy. Mechanistically, circMAPKBP1 enhanced cisplatin sensitivity through the miR-17-3p/TGFβ2 axis by activating autophagy pathway. Data from clinical studies revealed that high expression of circMAPKBP1 and TGFβ2 was closely linked to a poor outcome in TSCC patients. We thus concluded that circMAPKBP1 is a tumor promoting factor and confers cisplatin sensitivity by activating the miR-17-3p/TGFβ2 axis-mediated autophagy. We propose that circMAPKBP1 may be a potential therapeutic target for TSCC.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383524006256\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524006256","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铂类化疗是舌鳞状细胞癌(TSCC)的一线治疗方法,但大多数患者会迅速产生耐药性。环状 RNA(circRNA)是多种肿瘤发病机制中的一类关键调控因子,但它们在 TSCC 的顺铂耐药性中的作用尚未完全阐明。在这里,我们发现circMAPKBP1在顺铂耐药的TSCC细胞中富集,并与自噬活性增强密切相关。从功能上讲,沉默circMAPKBP1可通过抑制自噬作用显著恢复顺铂耐药TSCC细胞在体外和体内的化疗敏感性。从机理上讲,circMAPKBP1通过激活自噬通路,通过miR-17-3p/TGFβ2轴增强顺铂敏感性。临床研究数据显示,circMAPKBP1和TGFβ2的高表达与TSCC患者的不良预后密切相关。因此我们认为,circMAPKBP1是一种肿瘤促进因子,通过激活miR-17-3p/TGFβ2轴介导的自噬而赋予顺铂敏感性。我们建议将 circMAPKBP1 作为 TSCC 的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tumor-promotional molecular axis CircMAPKBP1/miR-17-3p/TGFβ2 activates autophagy pathway to drive tongue squamous cell carcinoma cisplatin chemoresistance
Platinum-based chemotherapy is the first-line treatment for tongue squamous cell carcinoma (TSCC), but most patients rapidly develop resistance. Circular RNAs (circRNAs) are a class of critical regulators in the pathogenesis of several tumors, but their role in cisplatin resistance in TSCC has not been fully elucidated. Here we found that circMAPKBP1 was enriched in cisplatin resistant TSCC cells and was closely associated with enhanced autophagic activity. Functionally, silencing circMAPKBP1 significantly restored the chemosensitivity of cisplatin-resistant TSCC cells both in vitro and in vivo by suppressing autophagy. Mechanistically, circMAPKBP1 enhanced cisplatin sensitivity through the miR-17-3p/TGFβ2 axis by activating autophagy pathway. Data from clinical studies revealed that high expression of circMAPKBP1 and TGFβ2 was closely linked to a poor outcome in TSCC patients. We thus concluded that circMAPKBP1 is a tumor promoting factor and confers cisplatin sensitivity by activating the miR-17-3p/TGFβ2 axis-mediated autophagy. We propose that circMAPKBP1 may be a potential therapeutic target for TSCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
期刊最新文献
Engraftment of a Surrogate Antigen onto Tumor Cell Surface via pHLIP Peptide to Universally Target CAR-T Cell Therapy to Solid Tumors. Immune checkpoint inhibitors as first-line treatment for brain metastases in stage IV NSCLC patients without driver mutations. Telaglenastat as an alternative to cisplatin as a radiosensitizer in the treatment of head and neck squamous cell carcinoma Clinical challenges in prostate cancer management: Metastatic bone-tropism and the role of circulating tumor cells. Mobocertinib antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells: in vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1