Adam Sobieszek, Maciej Siemiątkowski, Kamil K Imbir
{"title":"用于实验操作的生成神经网络:用数据高效模型检验支配力-可信度面部印象。","authors":"Adam Sobieszek, Maciej Siemiątkowski, Kamil K Imbir","doi":"10.1111/bjop.12732","DOIUrl":null,"url":null,"abstract":"<p><p>An important development in the study of face impressions was the introduction of dominance and trustworthiness as the primary and potentially orthogonal traits judged from faces. We test competing predictions of recent accounts that address evidence against the independence of these judgements. To this end we develop a version of recent 'deep models of face impressions' better suited for data-efficient experimental manipulation. In Study 1 (N = 128) we build impression models using 15 times less ratings per dimension than previously assumed necessary. In Study 2 (N = 234) we show how our method can precisely manipulate dominance and trustworthiness impressions of face photographs and observe how the effects' pattern of the cues of one trait on impressions of the other differs from previous accounts. We propose an altered account that stresses how a successful execution of the two judgements' functional roles requires impressions of trustworthiness and dominance to be based on cues of both traits. Finally we show our manipulation resulted in larger effect sizes using a broader array of features than previous methods. Our approach lets researchers manipulate face stimuli for various face perception studies and investigate new dimensions with minimal data collection.</p>","PeriodicalId":9300,"journal":{"name":"British journal of psychology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative neural networks for experimental manipulation: Examining dominance-trustworthiness face impressions with data-efficient models.\",\"authors\":\"Adam Sobieszek, Maciej Siemiątkowski, Kamil K Imbir\",\"doi\":\"10.1111/bjop.12732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important development in the study of face impressions was the introduction of dominance and trustworthiness as the primary and potentially orthogonal traits judged from faces. We test competing predictions of recent accounts that address evidence against the independence of these judgements. To this end we develop a version of recent 'deep models of face impressions' better suited for data-efficient experimental manipulation. In Study 1 (N = 128) we build impression models using 15 times less ratings per dimension than previously assumed necessary. In Study 2 (N = 234) we show how our method can precisely manipulate dominance and trustworthiness impressions of face photographs and observe how the effects' pattern of the cues of one trait on impressions of the other differs from previous accounts. We propose an altered account that stresses how a successful execution of the two judgements' functional roles requires impressions of trustworthiness and dominance to be based on cues of both traits. Finally we show our manipulation resulted in larger effect sizes using a broader array of features than previous methods. Our approach lets researchers manipulate face stimuli for various face perception studies and investigate new dimensions with minimal data collection.</p>\",\"PeriodicalId\":9300,\"journal\":{\"name\":\"British journal of psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bjop.12732\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bjop.12732","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Generative neural networks for experimental manipulation: Examining dominance-trustworthiness face impressions with data-efficient models.
An important development in the study of face impressions was the introduction of dominance and trustworthiness as the primary and potentially orthogonal traits judged from faces. We test competing predictions of recent accounts that address evidence against the independence of these judgements. To this end we develop a version of recent 'deep models of face impressions' better suited for data-efficient experimental manipulation. In Study 1 (N = 128) we build impression models using 15 times less ratings per dimension than previously assumed necessary. In Study 2 (N = 234) we show how our method can precisely manipulate dominance and trustworthiness impressions of face photographs and observe how the effects' pattern of the cues of one trait on impressions of the other differs from previous accounts. We propose an altered account that stresses how a successful execution of the two judgements' functional roles requires impressions of trustworthiness and dominance to be based on cues of both traits. Finally we show our manipulation resulted in larger effect sizes using a broader array of features than previous methods. Our approach lets researchers manipulate face stimuli for various face perception studies and investigate new dimensions with minimal data collection.
期刊介绍:
The British Journal of Psychology publishes original research on all aspects of general psychology including cognition; health and clinical psychology; developmental, social and occupational psychology. For information on specific requirements, please view Notes for Contributors. We attract a large number of international submissions each year which make major contributions across the range of psychology.