揭示丹参酮作为心血管疾病新斗士的保护作用机制:系统综述。

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Toxicology Pub Date : 2024-09-22 DOI:10.1007/s12012-024-09921-x
Mohammad Mahdi Dabbaghi, Hesan Soleimani Roudi, Rozhan Safaei, Vafa Baradaran Rahimi, Mohammad Reza Fadaei, Vahid Reza Askari
{"title":"揭示丹参酮作为心血管疾病新斗士的保护作用机制:系统综述。","authors":"Mohammad Mahdi Dabbaghi, Hesan Soleimani Roudi, Rozhan Safaei, Vafa Baradaran Rahimi, Mohammad Reza Fadaei, Vahid Reza Askari","doi":"10.1007/s12012-024-09921-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI<sub>3</sub>K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review.\",\"authors\":\"Mohammad Mahdi Dabbaghi, Hesan Soleimani Roudi, Rozhan Safaei, Vafa Baradaran Rahimi, Mohammad Reza Fadaei, Vahid Reza Askari\",\"doi\":\"10.1007/s12012-024-09921-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI<sub>3</sub>K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.</p>\",\"PeriodicalId\":9570,\"journal\":{\"name\":\"Cardiovascular Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12012-024-09921-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09921-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

丹参酮是一种存在于丹参根部的天然化合物,已被证明具有多种药理特性,包括抗炎、抗氧化和心血管保护作用。本文旨在对丹参酮的心血管保护作用及其内在机制的文献进行综述。在各种心血管疾病动物模型中,丹参酮已被证实具有改善心脏功能、减少氧化应激和抑制炎症的作用。此外,丹参酮还能调节心血管疾病发病机制中的多种信号通路,如 PI3K/AKT、MAPK 和 NF-κB 通路。临床研究也表明丹参酮具有治疗心血管疾病的潜力。总之,丹参酮是一种很有前景的天然化合物,具有显著的心血管保护作用,我们需要进一步研究探索其潜在的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review.

Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
期刊最新文献
Correction: Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes. Persistent Ferroptosis Modulates Cardiac Remodeling and M2 Macrophage Polarization, Which Can be Mitigated by Astaxanthin During Myocardial Infarction Recovery. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Myocarditis Following Pembrolizumab Plus Axitinib, and Belzutifan Plus Lenvatinib for Renal Cell Carcinoma: A Case Report. Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1