中药泽泻汤通过抑制 PI3K/AKT/NF-κB 信号通路,减轻哮喘小鼠的炎症反应。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-08 DOI:10.14715/cmb/2024.70.8.24
He Luo, Yuhong Lin, Yuxin Guan
{"title":"中药泽泻汤通过抑制 PI3K/AKT/NF-κB 信号通路,减轻哮喘小鼠的炎症反应。","authors":"He Luo, Yuhong Lin, Yuxin Guan","doi":"10.14715/cmb/2024.70.8.24","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma is a chronic airway inflammatory disease. The excessive proliferation of airway smooth muscle cells (ASMCs) is associated with airway remodeling. Ze-Qi-Tang (ZQT) is a popular traditional Chinese medicine preparation and has been confirmed to have therapeutic effects on lung diseases. This study is aimed to probe the biological function of ZQT in asthma. RT-qPCR and ELISA were utilized for testing the mRNA levels and concentrations of pro-inflammatory factors. Colony formation and transwell assay were applied to test cell viability and migration. The mouse model with asthma was established by ovalbumin (OVA) induction. Western blot was utilized for detecting the activation of PI3K/AKT/NF-κB pathway. We found that the concentrations of proinflammatory factors in cells induced by PDGF-BB could been suppressed by ZQT. ZQT-H treatment notably repressed cell viability and proliferation. Furthermore, we proved the suppressive effect of ZQT on airway inflammation in asthma mice. Additionally, we discovered that ZQT could suppress the PI3K/AKT/NF-κB pathway in PDGF-BB-induced ASMCs. To sum up, ZQT reduced airway inflammation and remodeling in mice with asthma via inactivating PI3K/AKT/NF-κB pathway.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traditional Chinese medicine Ze-Qi-Tang formula reduces inflammation in mice with asthma by inhibiting PI3K/AKT/NF-κB signaling pathway.\",\"authors\":\"He Luo, Yuhong Lin, Yuxin Guan\",\"doi\":\"10.14715/cmb/2024.70.8.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Asthma is a chronic airway inflammatory disease. The excessive proliferation of airway smooth muscle cells (ASMCs) is associated with airway remodeling. Ze-Qi-Tang (ZQT) is a popular traditional Chinese medicine preparation and has been confirmed to have therapeutic effects on lung diseases. This study is aimed to probe the biological function of ZQT in asthma. RT-qPCR and ELISA were utilized for testing the mRNA levels and concentrations of pro-inflammatory factors. Colony formation and transwell assay were applied to test cell viability and migration. The mouse model with asthma was established by ovalbumin (OVA) induction. Western blot was utilized for detecting the activation of PI3K/AKT/NF-κB pathway. We found that the concentrations of proinflammatory factors in cells induced by PDGF-BB could been suppressed by ZQT. ZQT-H treatment notably repressed cell viability and proliferation. Furthermore, we proved the suppressive effect of ZQT on airway inflammation in asthma mice. Additionally, we discovered that ZQT could suppress the PI3K/AKT/NF-κB pathway in PDGF-BB-induced ASMCs. To sum up, ZQT reduced airway inflammation and remodeling in mice with asthma via inactivating PI3K/AKT/NF-κB pathway.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14715/cmb/2024.70.8.24\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.8.24","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

哮喘是一种慢性气道炎症性疾病。气道平滑肌细胞(ASMC)的过度增殖与气道重塑有关。泽泻汤是一种常用的中药制剂,已被证实对肺部疾病有治疗作用。本研究旨在探讨泽泻汤在哮喘中的生物学功能。研究采用 RT-qPCR 和 ELISA 方法检测促炎因子的 mRNA 水平和浓度。集落形成和透孔试验用于检测细胞活力和迁移。通过卵清蛋白(OVA)诱导建立了哮喘小鼠模型。利用 Western blot 检测 PI3K/AKT/NF-κB 通路的激活情况。我们发现,ZQT 可以抑制 PDGF-BB 诱导的细胞中促炎因子的浓度。ZQT-H 处理显著抑制了细胞的活力和增殖。此外,我们还证实了 ZQT 对哮喘小鼠气道炎症的抑制作用。此外,我们还发现 ZQT 可抑制 PDGF-BB 诱导的 ASMC 中的 PI3K/AKT/NF-κB 通路。总之,ZQT 通过使 PI3K/AKT/NF-κB 通路失活,减轻了哮喘小鼠的气道炎症和重塑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traditional Chinese medicine Ze-Qi-Tang formula reduces inflammation in mice with asthma by inhibiting PI3K/AKT/NF-κB signaling pathway.

Asthma is a chronic airway inflammatory disease. The excessive proliferation of airway smooth muscle cells (ASMCs) is associated with airway remodeling. Ze-Qi-Tang (ZQT) is a popular traditional Chinese medicine preparation and has been confirmed to have therapeutic effects on lung diseases. This study is aimed to probe the biological function of ZQT in asthma. RT-qPCR and ELISA were utilized for testing the mRNA levels and concentrations of pro-inflammatory factors. Colony formation and transwell assay were applied to test cell viability and migration. The mouse model with asthma was established by ovalbumin (OVA) induction. Western blot was utilized for detecting the activation of PI3K/AKT/NF-κB pathway. We found that the concentrations of proinflammatory factors in cells induced by PDGF-BB could been suppressed by ZQT. ZQT-H treatment notably repressed cell viability and proliferation. Furthermore, we proved the suppressive effect of ZQT on airway inflammation in asthma mice. Additionally, we discovered that ZQT could suppress the PI3K/AKT/NF-κB pathway in PDGF-BB-induced ASMCs. To sum up, ZQT reduced airway inflammation and remodeling in mice with asthma via inactivating PI3K/AKT/NF-κB pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1