Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi, Manish Kumar
{"title":"与皮肤癌有关的新兴纳米技术:致病机理、生物标志物、Ethosomal 配方和未来展望。","authors":"Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi, Manish Kumar","doi":"10.2174/0113892010311407240902050401","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Nanotechnology Involved in Skin Cancer: Pathogenesis, Biomarkers, Ethosomal Formulation and Future Perspective.\",\"authors\":\"Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi, Manish Kumar\",\"doi\":\"10.2174/0113892010311407240902050401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010311407240902050401\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010311407240902050401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Emerging Nanotechnology Involved in Skin Cancer: Pathogenesis, Biomarkers, Ethosomal Formulation and Future Perspective.
Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.