{"title":"基于证据的非女性化雌激素的神经保护潜力:体外和体内研究。","authors":"Seema Bansal, Rajan Swami, Nitin Bansal, Rishabh Chaudhary, Saniya Mahendiratta, Harpreet Kaur, Kanwaljit Chopra, Bikash Medhi","doi":"10.1111/ejn.16512","DOIUrl":null,"url":null,"abstract":"<p>Menopause weakens the brain's structural integrity and increases its susceptibility to a range of degenerative and mental illnesses. 17β estradiol (17βE2) exhibits potent neuroprotective properties. Exogenous estrogen supplementation provides neuroprotection, but the findings presented by the Million Women Study (MWS) and the Women's Health Initiative (WHI), as well as the increased risk of endometrial cancer, breast cancer and venous thromboembolism associated with estrogen use, have cast doubt on its clinical use for neurological disorders. Thus, the objective of our review article is to compile all in vitro and in vivo studies conducted till date demonstrating the neuroprotective potential of nonfeminizing estrogens. This objective has been achieved by gathering various research and review manuscripts from different records such as PubMed, Embase, Scopus, Google Scholar, Web of Science and OVID, using different terms like ‘estrogen deficiency, 17β estradiol, non-feminising estrogens, and brain disorder’. However, recent evidence has revealed the contribution of numerous non-estrogen receptor-dependent pathways in neuroprotective effects of estrogen. In conclusion, synthetic nonfeminizing estrogens that have little or no ER binding but are equally powerful (and in some cases more potent) in delivering neuroprotection are emerging as viable and potential alternatives.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 8","pages":"6046-6056"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence-based neuroprotective potential of nonfeminizing estrogens: In vitro and in vivo studies\",\"authors\":\"Seema Bansal, Rajan Swami, Nitin Bansal, Rishabh Chaudhary, Saniya Mahendiratta, Harpreet Kaur, Kanwaljit Chopra, Bikash Medhi\",\"doi\":\"10.1111/ejn.16512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Menopause weakens the brain's structural integrity and increases its susceptibility to a range of degenerative and mental illnesses. 17β estradiol (17βE2) exhibits potent neuroprotective properties. Exogenous estrogen supplementation provides neuroprotection, but the findings presented by the Million Women Study (MWS) and the Women's Health Initiative (WHI), as well as the increased risk of endometrial cancer, breast cancer and venous thromboembolism associated with estrogen use, have cast doubt on its clinical use for neurological disorders. Thus, the objective of our review article is to compile all in vitro and in vivo studies conducted till date demonstrating the neuroprotective potential of nonfeminizing estrogens. This objective has been achieved by gathering various research and review manuscripts from different records such as PubMed, Embase, Scopus, Google Scholar, Web of Science and OVID, using different terms like ‘estrogen deficiency, 17β estradiol, non-feminising estrogens, and brain disorder’. However, recent evidence has revealed the contribution of numerous non-estrogen receptor-dependent pathways in neuroprotective effects of estrogen. In conclusion, synthetic nonfeminizing estrogens that have little or no ER binding but are equally powerful (and in some cases more potent) in delivering neuroprotection are emerging as viable and potential alternatives.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"60 8\",\"pages\":\"6046-6056\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16512\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16512","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Evidence-based neuroprotective potential of nonfeminizing estrogens: In vitro and in vivo studies
Menopause weakens the brain's structural integrity and increases its susceptibility to a range of degenerative and mental illnesses. 17β estradiol (17βE2) exhibits potent neuroprotective properties. Exogenous estrogen supplementation provides neuroprotection, but the findings presented by the Million Women Study (MWS) and the Women's Health Initiative (WHI), as well as the increased risk of endometrial cancer, breast cancer and venous thromboembolism associated with estrogen use, have cast doubt on its clinical use for neurological disorders. Thus, the objective of our review article is to compile all in vitro and in vivo studies conducted till date demonstrating the neuroprotective potential of nonfeminizing estrogens. This objective has been achieved by gathering various research and review manuscripts from different records such as PubMed, Embase, Scopus, Google Scholar, Web of Science and OVID, using different terms like ‘estrogen deficiency, 17β estradiol, non-feminising estrogens, and brain disorder’. However, recent evidence has revealed the contribution of numerous non-estrogen receptor-dependent pathways in neuroprotective effects of estrogen. In conclusion, synthetic nonfeminizing estrogens that have little or no ER binding but are equally powerful (and in some cases more potent) in delivering neuroprotection are emerging as viable and potential alternatives.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.