季节性热适应对青壮年被动热应激时寻求凉爽行为的影响。

IF 2.6 4区 医学 Q2 PHYSIOLOGY Experimental Physiology Pub Date : 2024-09-09 DOI:10.1113/EP091969
Hui Wang, Zachary J Schlader, Tze-Huan Lei, Toby Mündel, Tatsuro Amano, Naoto Fujii, Takeshi Nishiyasu, James Cotter, Narihiko Kondo
{"title":"季节性热适应对青壮年被动热应激时寻求凉爽行为的影响。","authors":"Hui Wang, Zachary J Schlader, Tze-Huan Lei, Toby Mündel, Tatsuro Amano, Naoto Fujii, Takeshi Nishiyasu, James Cotter, Narihiko Kondo","doi":"10.1113/EP091969","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal heat acclimatization is known to enhance autonomic thermoeffector responses, whereas the behavioural response following seasonal heat acclimatization remains unknown. We investigated whether seasonal heat acclimatization would alter autonomic and behavioural thermoregulatory responses. Sixteen healthy participants (eight males and eight females) underwent two trials involving 50 min of lower-leg passive heating (lower-leg submersion in 42°C water) with (Fan trial) and without (No fan trial) the voluntary use of a fan in a moderate thermal environment (27°C, 50% relative humidity) across winter and summer months. In Fan trials, participants were allowed to use a fan to maintain thermal comfort, but this was not allowed in the No fan trials. Cool-seeking behaviour was initiated at a lower change in rectal temperature [mean (SD): 0.21 (0.18)°C vs. 0.11 (0.13)°C, P = 0.0327] and change in mean skin temperature [2.34 (0.56)°C vs. 1.81 (0.32)°C, P < 0.0001], and cooling time was longer [16.46 (5.62) vs. 20.40 (4.87) min, P = 0.0224] in summer compared with winter. However, thermal perception was not modified by season during lower-leg passive heating (all P > 0.0864). Furthermore, rectal temperature was higher in summer (P = 0.0433), whereas mean body temperature and skin temperature were not different (all P > 0.0631) between the two seasons in Fan trials. In conclusion, seasonal heat acclimatization enhanced the cool-seeking behaviour from winter to summer.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of seasonal heat acclimatization on cool-seeking behaviour during passive heat stress in young adults.\",\"authors\":\"Hui Wang, Zachary J Schlader, Tze-Huan Lei, Toby Mündel, Tatsuro Amano, Naoto Fujii, Takeshi Nishiyasu, James Cotter, Narihiko Kondo\",\"doi\":\"10.1113/EP091969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonal heat acclimatization is known to enhance autonomic thermoeffector responses, whereas the behavioural response following seasonal heat acclimatization remains unknown. We investigated whether seasonal heat acclimatization would alter autonomic and behavioural thermoregulatory responses. Sixteen healthy participants (eight males and eight females) underwent two trials involving 50 min of lower-leg passive heating (lower-leg submersion in 42°C water) with (Fan trial) and without (No fan trial) the voluntary use of a fan in a moderate thermal environment (27°C, 50% relative humidity) across winter and summer months. In Fan trials, participants were allowed to use a fan to maintain thermal comfort, but this was not allowed in the No fan trials. Cool-seeking behaviour was initiated at a lower change in rectal temperature [mean (SD): 0.21 (0.18)°C vs. 0.11 (0.13)°C, P = 0.0327] and change in mean skin temperature [2.34 (0.56)°C vs. 1.81 (0.32)°C, P < 0.0001], and cooling time was longer [16.46 (5.62) vs. 20.40 (4.87) min, P = 0.0224] in summer compared with winter. However, thermal perception was not modified by season during lower-leg passive heating (all P > 0.0864). Furthermore, rectal temperature was higher in summer (P = 0.0433), whereas mean body temperature and skin temperature were not different (all P > 0.0631) between the two seasons in Fan trials. In conclusion, seasonal heat acclimatization enhanced the cool-seeking behaviour from winter to summer.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP091969\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP091969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,季节性热适应会增强自律性体温调节反应,而季节性热适应后的行为反应仍是未知数。我们研究了季节性热适应是否会改变自律神经和行为体温调节反应。16 名健康参与者(8 名男性和 8 名女性)分别在冬季和夏季的中等温度环境(27°C,50% 相对湿度)中进行了 50 分钟的小腿被动加热试验(将小腿浸入 42°C 的水中),试验中分别使用了风扇(风扇试验)和不使用风扇(不使用风扇试验)。在风扇试验中,参与者可以使用风扇来保持热舒适度,但在无风扇试验中则不允许这样做。在直肠温度变化[平均值(标清):0.21 (0.18)°C vs. 0.11 (0.13)°C, P = 0.0327]和平均皮肤温度变化[2.34 (0.56)°C vs. 1.81 (0.32)°C, P 0.0864]较低时,参与者开始寻求凉爽。此外,直肠温度在夏季更高(P = 0.0433),而在 Fan 试验中,平均体温和皮肤温度在两个季节之间没有差异(所有 P > 0.0631)。总之,季节性热适应增强了从冬季到夏季的寻凉行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of seasonal heat acclimatization on cool-seeking behaviour during passive heat stress in young adults.

Seasonal heat acclimatization is known to enhance autonomic thermoeffector responses, whereas the behavioural response following seasonal heat acclimatization remains unknown. We investigated whether seasonal heat acclimatization would alter autonomic and behavioural thermoregulatory responses. Sixteen healthy participants (eight males and eight females) underwent two trials involving 50 min of lower-leg passive heating (lower-leg submersion in 42°C water) with (Fan trial) and without (No fan trial) the voluntary use of a fan in a moderate thermal environment (27°C, 50% relative humidity) across winter and summer months. In Fan trials, participants were allowed to use a fan to maintain thermal comfort, but this was not allowed in the No fan trials. Cool-seeking behaviour was initiated at a lower change in rectal temperature [mean (SD): 0.21 (0.18)°C vs. 0.11 (0.13)°C, P = 0.0327] and change in mean skin temperature [2.34 (0.56)°C vs. 1.81 (0.32)°C, P < 0.0001], and cooling time was longer [16.46 (5.62) vs. 20.40 (4.87) min, P = 0.0224] in summer compared with winter. However, thermal perception was not modified by season during lower-leg passive heating (all P > 0.0864). Furthermore, rectal temperature was higher in summer (P = 0.0433), whereas mean body temperature and skin temperature were not different (all P > 0.0631) between the two seasons in Fan trials. In conclusion, seasonal heat acclimatization enhanced the cool-seeking behaviour from winter to summer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Physiology
Experimental Physiology 医学-生理学
CiteScore
5.10
自引率
3.70%
发文量
262
审稿时长
1 months
期刊介绍: Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged. Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.
期刊最新文献
Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Inhibition of TrkB kinase activity impairs autophagy in cervical motor neurons of young but not old mice. Measuring position sense. Born high, born fast: Does highland birth confer a pulmonary advantage for sea level endurance? Aerobic capacity and muscle proteome: Insights from a mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1