Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva
{"title":"基于心电图的深度学习预测法洛氏四联症修复后的死亡率","authors":"Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva","doi":"10.1016/j.jacep.2024.07.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.</p><p><strong>Objectives: </strong>This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.</p><p><strong>Methods: </strong>A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.</p><p><strong>Results: </strong>The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.</p><p><strong>Conclusions: </strong>This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.</p>","PeriodicalId":14573,"journal":{"name":"JACC. Clinical electrophysiology","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiogram-Based Deep Learning to Predict Mortality in Repaired Tetralogy of Fallot.\",\"authors\":\"Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva\",\"doi\":\"10.1016/j.jacep.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.</p><p><strong>Objectives: </strong>This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.</p><p><strong>Methods: </strong>A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.</p><p><strong>Results: </strong>The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.</p><p><strong>Conclusions: </strong>This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.</p>\",\"PeriodicalId\":14573,\"journal\":{\"name\":\"JACC. Clinical electrophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC. Clinical electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jacep.2024.07.015\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC. Clinical electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jacep.2024.07.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Electrocardiogram-Based Deep Learning to Predict Mortality in Repaired Tetralogy of Fallot.
Background: Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.
Objectives: This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.
Methods: A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.
Results: The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.
Conclusions: This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.
期刊介绍:
JACC: Clinical Electrophysiology is one of a family of specialist journals launched by the renowned Journal of the American College of Cardiology (JACC). It encompasses all aspects of the epidemiology, pathogenesis, diagnosis and treatment of cardiac arrhythmias. Submissions of original research and state-of-the-art reviews from cardiology, cardiovascular surgery, neurology, outcomes research, and related fields are encouraged. Experimental and preclinical work that directly relates to diagnostic or therapeutic interventions are also encouraged. In general, case reports will not be considered for publication.