基于人工智能放射组学的肺结节风险分层工具的临床实用性

IF 3.4 Q2 ONCOLOGY JNCI Cancer Spectrum Pub Date : 2024-09-02 DOI:10.1093/jncics/pkae086
Roger Y Kim, Clarisa Yee, Sana Zeb, Jennifer Steltz, Andrew J Vickers, Katharine A Rendle, Nandita Mitra, Lyndsey C Pickup, David M DiBardino, Anil Vachani
{"title":"基于人工智能放射组学的肺结节风险分层工具的临床实用性","authors":"Roger Y Kim, Clarisa Yee, Sana Zeb, Jennifer Steltz, Andrew J Vickers, Katharine A Rendle, Nandita Mitra, Lyndsey C Pickup, David M DiBardino, Anil Vachani","doi":"10.1093/jncics/pkae086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided diagnosis (CAD) tool in addition to routine clinical information to risk stratify PNs among real-world patients.</p><p><strong>Methods: </strong>We performed a retrospective cohort study of patients with PNs who underwent lung biopsy. We collected clinical data and used a commercially available AI radiomics-based CAD tool to calculate a Lung Cancer Prediction (LCP) score. We developed logistic regression models to evaluate a well-validated clinical risk prediction model (the Mayo Clinic model) with and without the LCP score (Mayo vs Mayo + LCP) using area under the curve (AUC), risk stratification table, and standardized net benefit analyses.</p><p><strong>Results: </strong>Among the 134 patients undergoing PN biopsy, cancer prevalence was 61%. Addition of the radiomics-based LCP score to the Mayo model was associated with increased predictive accuracy (likelihood ratio test, P = .012). The AUCs for the Mayo and Mayo + LCP models were 0.58 (95% CI = 0.48 to 0.69) and 0.65 (95% CI = 0.56 to 0.75), respectively. At the 65% risk threshold, the Mayo + LCP model was associated with increased sensitivity (56% vs 38%; P = .019), similar false positive rate (33% vs 35%; P = .8), and increased standardized net benefit (18% vs -3.3%) compared with the Mayo model.</p><p><strong>Conclusions: </strong>Use of a commercially available AI radiomics-based CAD tool as a supplement to clinical information improved PN cancer risk prediction and may result in clinically meaningful changes in risk stratification.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules.\",\"authors\":\"Roger Y Kim, Clarisa Yee, Sana Zeb, Jennifer Steltz, Andrew J Vickers, Katharine A Rendle, Nandita Mitra, Lyndsey C Pickup, David M DiBardino, Anil Vachani\",\"doi\":\"10.1093/jncics/pkae086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided diagnosis (CAD) tool in addition to routine clinical information to risk stratify PNs among real-world patients.</p><p><strong>Methods: </strong>We performed a retrospective cohort study of patients with PNs who underwent lung biopsy. We collected clinical data and used a commercially available AI radiomics-based CAD tool to calculate a Lung Cancer Prediction (LCP) score. We developed logistic regression models to evaluate a well-validated clinical risk prediction model (the Mayo Clinic model) with and without the LCP score (Mayo vs Mayo + LCP) using area under the curve (AUC), risk stratification table, and standardized net benefit analyses.</p><p><strong>Results: </strong>Among the 134 patients undergoing PN biopsy, cancer prevalence was 61%. Addition of the radiomics-based LCP score to the Mayo model was associated with increased predictive accuracy (likelihood ratio test, P = .012). The AUCs for the Mayo and Mayo + LCP models were 0.58 (95% CI = 0.48 to 0.69) and 0.65 (95% CI = 0.56 to 0.75), respectively. At the 65% risk threshold, the Mayo + LCP model was associated with increased sensitivity (56% vs 38%; P = .019), similar false positive rate (33% vs 35%; P = .8), and increased standardized net benefit (18% vs -3.3%) compared with the Mayo model.</p><p><strong>Conclusions: </strong>Use of a commercially available AI radiomics-based CAD tool as a supplement to clinical information improved PN cancer risk prediction and may result in clinically meaningful changes in risk stratification.</p>\",\"PeriodicalId\":14681,\"journal\":{\"name\":\"JNCI Cancer Spectrum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JNCI Cancer Spectrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jncics/pkae086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkae086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:关于肺结节(PN)风险分层生物标志物的临床实用性数据尚缺。我们旨在确定在常规临床信息之外使用基于人工智能(AI)放射组学的计算机辅助诊断(CAD)工具对现实世界中的肺结节患者进行风险分层的增量预测价值和临床实用性:我们对接受肺活检的 PN 患者进行了一项回顾性队列研究。我们收集了临床数据,并使用市售的基于人工智能放射组学的 CAD 工具计算了肺癌预测(LCP)评分。我们建立了逻辑回归模型,利用曲线下面积(AUC)、风险分层表和标准化净效益分析,评估了有LCP评分和无LCP评分(Mayo vs Mayo + LCP)的经过验证的临床风险预测模型(梅奥诊所模型):在接受 PN 活检的 134 名患者中,癌症发病率为 61%。在梅奥模型中加入基于放射组学的 LCP 评分可提高预测准确性(似然比检验,P = .012)。梅奥模型和梅奥 + LCP 模型的 AUC 分别为 0.58(95% CI,0.48-0.69)和 0.65(95% CI,0.56-0.75)。在65%的风险阈值下,与梅奥模型相比,梅奥+LCP模型的灵敏度增加(56% vs 38%;P = .019),假阳性率相似(33% vs 35%;P = .8),标准化净收益增加(18% vs -3.3%):结论:使用市售的基于人工智能放射组学的 CAD 工具作为临床信息的补充,可改善 PN 癌症风险预测,并可能导致风险分层中具有临床意义的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules.

Background: Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided diagnosis (CAD) tool in addition to routine clinical information to risk stratify PNs among real-world patients.

Methods: We performed a retrospective cohort study of patients with PNs who underwent lung biopsy. We collected clinical data and used a commercially available AI radiomics-based CAD tool to calculate a Lung Cancer Prediction (LCP) score. We developed logistic regression models to evaluate a well-validated clinical risk prediction model (the Mayo Clinic model) with and without the LCP score (Mayo vs Mayo + LCP) using area under the curve (AUC), risk stratification table, and standardized net benefit analyses.

Results: Among the 134 patients undergoing PN biopsy, cancer prevalence was 61%. Addition of the radiomics-based LCP score to the Mayo model was associated with increased predictive accuracy (likelihood ratio test, P = .012). The AUCs for the Mayo and Mayo + LCP models were 0.58 (95% CI = 0.48 to 0.69) and 0.65 (95% CI = 0.56 to 0.75), respectively. At the 65% risk threshold, the Mayo + LCP model was associated with increased sensitivity (56% vs 38%; P = .019), similar false positive rate (33% vs 35%; P = .8), and increased standardized net benefit (18% vs -3.3%) compared with the Mayo model.

Conclusions: Use of a commercially available AI radiomics-based CAD tool as a supplement to clinical information improved PN cancer risk prediction and may result in clinically meaningful changes in risk stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JNCI Cancer Spectrum
JNCI Cancer Spectrum Medicine-Oncology
CiteScore
7.70
自引率
0.00%
发文量
80
审稿时长
18 weeks
期刊最新文献
Gut Microbiome in Colorectal Cancer: Metagenomics from Bench to Bedside. Functional outcomes after primary vs delayed robot-assisted radical prostatectomy following active surveillance. Do trial benefits predict real-world gains in metastatic castration resistant prostate cancer. Multi-gene risk-score for prediction of clinical outcomes in treatment-naïve metastatic castrate resistant prostate cancer. The mediating role of physical activity on cognitive disparities in cancer survivors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1