J Marc Simard, Cigdem Tosun, Orest Tsymbalyuk, Mitchell Moyer, Kaspar Keledjian, Natalya Tsymbalyuk, Adedayo Olaniran, Madison Evans, Jenna Langbein, Ziam Khan, Matthew Kreinbrink, Prajwal Ciryam, Jesse A Stokum, Ruchira M Jha, Alexander Ksendzovsky, Volodymyr Gerzanich
{"title":"颞叶挫伤小鼠模型","authors":"J Marc Simard, Cigdem Tosun, Orest Tsymbalyuk, Mitchell Moyer, Kaspar Keledjian, Natalya Tsymbalyuk, Adedayo Olaniran, Madison Evans, Jenna Langbein, Ziam Khan, Matthew Kreinbrink, Prajwal Ciryam, Jesse A Stokum, Ruchira M Jha, Alexander Ksendzovsky, Volodymyr Gerzanich","doi":"10.1089/neu.2024.0242","DOIUrl":null,"url":null,"abstract":"<p><p>Trauma to the brain can induce a contusion characterized by a discrete intracerebral or diffuse interstitial hemorrhage. In humans, \"computed tomography-positive,\" that is, hemorrhagic, temporal lobe contusions (tlCont) have unique sequelae. TlCont confers significantly increased odds for moderate or worse disability and the inability to return to baseline work capacity compared to intra-axial injuries in other locations. Patients with tlCont are at elevated risks of memory dysfunction, anxiety, and post-traumatic epilepsy due to involvement of neuroanatomical structures unique to the temporal lobe including the amygdala, hippocampus, and ento-/perirhinal cortex. Because of the relative inaccessibility of the temporal lobe in rodents, no preclinical model of tlCont has been described, impeding progress in elucidating the specific pathophysiology unique to tlCont. Here, we present a minimally invasive mouse model of tlCont with the contusion characterized by a traumatic interstitial hemorrhage. Mortality was low and sensorimotor deficits (beam walk, accelerating rotarod) resolved completely within 3-5 days. However, significant deficits in memory (novel object recognition, Morris water maze) and anxiety (elevated plus maze) persisted at 14-35 days and nonconvulsive electroencephalographic seizures and spiking were significantly increased in the hippocampus at 7-21 days. Immunohistochemistry showed widespread astrogliosis and microgliosis, bilateral hippocampal sclerosis, bilateral loss of hippocampal and cortical inhibitory parvalbumin neurons, and evidence of interhemispheric connectional diaschisis involving the fiber bundle in the ventral corpus callosum that connects temporal lobe structures. This model may be useful to advance our understanding of the unique features of tlCont in humans.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mouse Model of Temporal Lobe Contusion.\",\"authors\":\"J Marc Simard, Cigdem Tosun, Orest Tsymbalyuk, Mitchell Moyer, Kaspar Keledjian, Natalya Tsymbalyuk, Adedayo Olaniran, Madison Evans, Jenna Langbein, Ziam Khan, Matthew Kreinbrink, Prajwal Ciryam, Jesse A Stokum, Ruchira M Jha, Alexander Ksendzovsky, Volodymyr Gerzanich\",\"doi\":\"10.1089/neu.2024.0242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trauma to the brain can induce a contusion characterized by a discrete intracerebral or diffuse interstitial hemorrhage. In humans, \\\"computed tomography-positive,\\\" that is, hemorrhagic, temporal lobe contusions (tlCont) have unique sequelae. TlCont confers significantly increased odds for moderate or worse disability and the inability to return to baseline work capacity compared to intra-axial injuries in other locations. Patients with tlCont are at elevated risks of memory dysfunction, anxiety, and post-traumatic epilepsy due to involvement of neuroanatomical structures unique to the temporal lobe including the amygdala, hippocampus, and ento-/perirhinal cortex. Because of the relative inaccessibility of the temporal lobe in rodents, no preclinical model of tlCont has been described, impeding progress in elucidating the specific pathophysiology unique to tlCont. Here, we present a minimally invasive mouse model of tlCont with the contusion characterized by a traumatic interstitial hemorrhage. Mortality was low and sensorimotor deficits (beam walk, accelerating rotarod) resolved completely within 3-5 days. However, significant deficits in memory (novel object recognition, Morris water maze) and anxiety (elevated plus maze) persisted at 14-35 days and nonconvulsive electroencephalographic seizures and spiking were significantly increased in the hippocampus at 7-21 days. Immunohistochemistry showed widespread astrogliosis and microgliosis, bilateral hippocampal sclerosis, bilateral loss of hippocampal and cortical inhibitory parvalbumin neurons, and evidence of interhemispheric connectional diaschisis involving the fiber bundle in the ventral corpus callosum that connects temporal lobe structures. This model may be useful to advance our understanding of the unique features of tlCont in humans.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2024.0242\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Trauma to the brain can induce a contusion characterized by a discrete intracerebral or diffuse interstitial hemorrhage. In humans, "computed tomography-positive," that is, hemorrhagic, temporal lobe contusions (tlCont) have unique sequelae. TlCont confers significantly increased odds for moderate or worse disability and the inability to return to baseline work capacity compared to intra-axial injuries in other locations. Patients with tlCont are at elevated risks of memory dysfunction, anxiety, and post-traumatic epilepsy due to involvement of neuroanatomical structures unique to the temporal lobe including the amygdala, hippocampus, and ento-/perirhinal cortex. Because of the relative inaccessibility of the temporal lobe in rodents, no preclinical model of tlCont has been described, impeding progress in elucidating the specific pathophysiology unique to tlCont. Here, we present a minimally invasive mouse model of tlCont with the contusion characterized by a traumatic interstitial hemorrhage. Mortality was low and sensorimotor deficits (beam walk, accelerating rotarod) resolved completely within 3-5 days. However, significant deficits in memory (novel object recognition, Morris water maze) and anxiety (elevated plus maze) persisted at 14-35 days and nonconvulsive electroencephalographic seizures and spiking were significantly increased in the hippocampus at 7-21 days. Immunohistochemistry showed widespread astrogliosis and microgliosis, bilateral hippocampal sclerosis, bilateral loss of hippocampal and cortical inhibitory parvalbumin neurons, and evidence of interhemispheric connectional diaschisis involving the fiber bundle in the ventral corpus callosum that connects temporal lobe structures. This model may be useful to advance our understanding of the unique features of tlCont in humans.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.