Cu2O/TiO2 可见光光催化复合材料对野菜黄单胞菌的抗菌作用

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Letters in Applied Microbiology Pub Date : 2024-10-01 DOI:10.1093/lambio/ovae087
Ying Jiang, Shiyu Zhou, Liuhong Chen, Yuning Huo, Guozheng Huang, Jianguo Cao, Xiling Dai
{"title":"Cu2O/TiO2 可见光光催化复合材料对野菜黄单胞菌的抗菌作用","authors":"Ying Jiang, Shiyu Zhou, Liuhong Chen, Yuning Huo, Guozheng Huang, Jianguo Cao, Xiling Dai","doi":"10.1093/lambio/ovae087","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a Cu2O/TiO2 (CuTi) visible-light photocatalytic composite was employed for the treatment of Xanthomonas campestris and X. campestris-infected Brassica napus seedlings. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against X. campestris were determined to be 8 and 32 μg ml-1, respectively. Transmission electron microscopy analysis demonstrated a direct correlation between the extent of bacterial cell damage and the concentration of CuTi. Noteworthily, a bactericidal rate of 100% was achieved at a concentration of 150 μg ml-1 over a treatment duration of 120 min. Moreover, alterations in active oxidants and antioxidants, including reactive oxygen species, glutathione reductase, superoxide dismutase, peroxidase, and catalase within the bacterial cells, were examined to elucidate the underlying mechanism of inhibition by the CuTi. The B. napus infected by X. campestris was treated with CuTi, and the efficacy was validated through determination of plant resistance indexes. The combined data confirmed that the CuTi is characterized by a low dose, fast onset, good effect, and higher safety for killing X. campestris, and it is expected to be developed as an antimicrobial agent for vegetables.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial effect of Cu2O/TiO2 visible-light photocatalytic composite on Xanthomonas campestris.\",\"authors\":\"Ying Jiang, Shiyu Zhou, Liuhong Chen, Yuning Huo, Guozheng Huang, Jianguo Cao, Xiling Dai\",\"doi\":\"10.1093/lambio/ovae087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a Cu2O/TiO2 (CuTi) visible-light photocatalytic composite was employed for the treatment of Xanthomonas campestris and X. campestris-infected Brassica napus seedlings. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against X. campestris were determined to be 8 and 32 μg ml-1, respectively. Transmission electron microscopy analysis demonstrated a direct correlation between the extent of bacterial cell damage and the concentration of CuTi. Noteworthily, a bactericidal rate of 100% was achieved at a concentration of 150 μg ml-1 over a treatment duration of 120 min. Moreover, alterations in active oxidants and antioxidants, including reactive oxygen species, glutathione reductase, superoxide dismutase, peroxidase, and catalase within the bacterial cells, were examined to elucidate the underlying mechanism of inhibition by the CuTi. The B. napus infected by X. campestris was treated with CuTi, and the efficacy was validated through determination of plant resistance indexes. The combined data confirmed that the CuTi is characterized by a low dose, fast onset, good effect, and higher safety for killing X. campestris, and it is expected to be developed as an antimicrobial agent for vegetables.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae087\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用 Cu2O/TiO2 可见光光催化复合材料(CuTi)处理野油菜黄单胞菌和野油菜黄单胞菌感染的甘蓝菜苗。对野马黄单胞菌的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)分别为 8 µg ml-¹ 和 32 µg ml-¹。透射电子显微镜分析表明,细菌细胞受损程度与 CuTi 的浓度直接相关。值得注意的是,在 120 分钟的处理时间内,150 微克/毫升-¹ 的浓度可达到 100% 的杀菌率。此外,还研究了细菌细胞内活性氧化剂和抗氧化剂(包括 ROS、GSH、GR、SOD、POD 和 CAT)的变化,以阐明 CuTi 抑菌的基本机制。用 CuTi 处理被野油菜 X. campestris 感染的甘蓝,并通过测定植物抗性指数来验证药效。综合数据证实,CuTi 具有剂量低、起效快、效果好、安全性高等特点,有望开发成蔬菜抗菌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibacterial effect of Cu2O/TiO2 visible-light photocatalytic composite on Xanthomonas campestris.

In this study, a Cu2O/TiO2 (CuTi) visible-light photocatalytic composite was employed for the treatment of Xanthomonas campestris and X. campestris-infected Brassica napus seedlings. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against X. campestris were determined to be 8 and 32 μg ml-1, respectively. Transmission electron microscopy analysis demonstrated a direct correlation between the extent of bacterial cell damage and the concentration of CuTi. Noteworthily, a bactericidal rate of 100% was achieved at a concentration of 150 μg ml-1 over a treatment duration of 120 min. Moreover, alterations in active oxidants and antioxidants, including reactive oxygen species, glutathione reductase, superoxide dismutase, peroxidase, and catalase within the bacterial cells, were examined to elucidate the underlying mechanism of inhibition by the CuTi. The B. napus infected by X. campestris was treated with CuTi, and the efficacy was validated through determination of plant resistance indexes. The combined data confirmed that the CuTi is characterized by a low dose, fast onset, good effect, and higher safety for killing X. campestris, and it is expected to be developed as an antimicrobial agent for vegetables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
期刊最新文献
Common mycorrhizal networks enhance growth and nutrient uptake in non-mycorrhizal Chenopodium album via Parthenium hysterophorus. Detection and antimicrobial resistance profiles of Salmonella enterica recovered from house fly intestinal tracts and environments of selected broiler farms in Texas. Selection of resistant coliform bacteria in the intestine of pigs following flock versus individual treatment with neomycin against post-weaning diarrhoae or amoxicillin against umbilical infection. Culture Studies of Phytoplankton Isolated from Sumiling Dam and Their Bioremediation Capacity in Aquaculture Wastewater. Isolation and anti-Xanthomonas citri activity of unguinol produced by Aspergillus unguis CBMAI 2140.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1