Shaoting Weng, Shengming Ma, Yueteng Xing, Wenhui Zhang, Yinrong Wu, Mengyao Fu, Zhongyi Luo, Qiuying Li, Sen Lin, Longfei Zhang, Yao Wang
{"title":"建立基于内切酶活性的犬细小病毒快速恒温检测方法。","authors":"Shaoting Weng, Shengming Ma, Yueteng Xing, Wenhui Zhang, Yinrong Wu, Mengyao Fu, Zhongyi Luo, Qiuying Li, Sen Lin, Longfei Zhang, Yao Wang","doi":"10.1128/spectrum.04222-23","DOIUrl":null,"url":null,"abstract":"<p><p>Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/μL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection.</p><p><strong>Importance: </strong>The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward establishing a rapid constant temperature detection method for canine parvovirus based on endonuclease activities.\",\"authors\":\"Shaoting Weng, Shengming Ma, Yueteng Xing, Wenhui Zhang, Yinrong Wu, Mengyao Fu, Zhongyi Luo, Qiuying Li, Sen Lin, Longfei Zhang, Yao Wang\",\"doi\":\"10.1128/spectrum.04222-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/μL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection.</p><p><strong>Importance: </strong>The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.04222-23\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.04222-23","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Toward establishing a rapid constant temperature detection method for canine parvovirus based on endonuclease activities.
Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/μL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection.
Importance: The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.