Judith Estrada-Meza , Jasmine Videlo , Clara Bron , Adeline Duchampt , Cécile Saint-Béat , Mickael Zergane , Marine Silva , Fabienne Rajas , Sebastien G. Bouret , Gilles Mithieux , Amandine Gautier-Stein
{"title":"肠道葡萄糖生成控制着新生儿下丘脑摄食回路的发育。","authors":"Judith Estrada-Meza , Jasmine Videlo , Clara Bron , Adeline Duchampt , Cécile Saint-Béat , Mickael Zergane , Marine Silva , Fabienne Rajas , Sebastien G. Bouret , Gilles Mithieux , Amandine Gautier-Stein","doi":"10.1016/j.molmet.2024.102036","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues.</div></div><div><h3>Methods</h3><div>We genetically induced neonatal IGN by overexpressing <em>G6pc1</em> the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal <em>G6pc1</em> on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal <em>G6pc1</em> were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months.</div></div><div><h3>Results</h3><div>Induction of intestinal <em>G6pc1</em> at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal <em>G6pc1</em> 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism.</div></div><div><h3>Conclusion</h3><div>These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"89 ","pages":"Article 102036"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits\",\"authors\":\"Judith Estrada-Meza , Jasmine Videlo , Clara Bron , Adeline Duchampt , Cécile Saint-Béat , Mickael Zergane , Marine Silva , Fabienne Rajas , Sebastien G. Bouret , Gilles Mithieux , Amandine Gautier-Stein\",\"doi\":\"10.1016/j.molmet.2024.102036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues.</div></div><div><h3>Methods</h3><div>We genetically induced neonatal IGN by overexpressing <em>G6pc1</em> the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal <em>G6pc1</em> on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal <em>G6pc1</em> were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months.</div></div><div><h3>Results</h3><div>Induction of intestinal <em>G6pc1</em> at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal <em>G6pc1</em> 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism.</div></div><div><h3>Conclusion</h3><div>These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"89 \",\"pages\":\"Article 102036\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001674\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits
Objective
Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues.
Methods
We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months.
Results
Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism.
Conclusion
These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.