Anna-Sophia Egger , Eva Rauch , Suraj Sharma , Tobias Kipura , Madlen Hotze , Thomas Mair , Alina Hohenegg , Philipp Kobler , Ines Heiland , Marcel Kwiatkowski
{"title":"通过对乙酰辅酶和组蛋白乙酰化位点的综合代谢通量分析,将新陈代谢和组蛋白乙酰化动态联系起来。","authors":"Anna-Sophia Egger , Eva Rauch , Suraj Sharma , Tobias Kipura , Madlen Hotze , Thomas Mair , Alina Hohenegg , Philipp Kobler , Ines Heiland , Marcel Kwiatkowski","doi":"10.1016/j.molmet.2024.102032","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis.</div></div><div><h3>Methods</h3><div>In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances.</div></div><div><h3>Results</h3><div>We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes.</div></div><div><h3>Conclusions</h3><div>Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"90 ","pages":"Article 102032"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking metabolism and histone acetylation dynamics by integrated metabolic flux analysis of Acetyl-CoA and histone acetylation sites\",\"authors\":\"Anna-Sophia Egger , Eva Rauch , Suraj Sharma , Tobias Kipura , Madlen Hotze , Thomas Mair , Alina Hohenegg , Philipp Kobler , Ines Heiland , Marcel Kwiatkowski\",\"doi\":\"10.1016/j.molmet.2024.102032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis.</div></div><div><h3>Methods</h3><div>In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances.</div></div><div><h3>Results</h3><div>We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes.</div></div><div><h3>Conclusions</h3><div>Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"90 \",\"pages\":\"Article 102032\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001637\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Linking metabolism and histone acetylation dynamics by integrated metabolic flux analysis of Acetyl-CoA and histone acetylation sites
Objectives
Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis.
Methods
In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances.
Results
We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes.
Conclusions
Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.