Yanda Geng, Alan Tsidilkovski, Kevin Weber, Shouvik Mukherjee, Alessandro Restelli, Sarthak Subhankar
{"title":"基于微控制器的紧凑型开源快速自动对准系统。","authors":"Yanda Geng, Alan Tsidilkovski, Kevin Weber, Shouvik Mukherjee, Alessandro Restelli, Sarthak Subhankar","doi":"10.1063/5.0211005","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining stable and precise alignment of a laser beam is crucial in many optical setups. In this work, we present a microcontroller-based rapid auto-alignment system that detects and corrects for drifts in a laser beam trajectory using a pair of two-dimensional duo-lateral position sensing detectors (PSDs) and a pair of mirror mounts with piezoelectric actuators. We develop hardware and software for interfacing with the PSDs and for controlling the motion of the piezoelectric mirror mounts. Our auto-alignment strategy-implemented as a state machine on the microcontroller by a real-time operating system kernel from FreeRTOS-is based on a simple linearized geometrical optical model. We benchmark our system using the standard case of coupling laser light efficiently into the guided mode of a single-mode fiber optic patch cable. We can recover the maximum fiber coupling efficiency in ∼10 seconds, even for a laser beam misaligned to the point of zero fiber coupling efficiency.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact and open-source microcontroller-based rapid auto-alignment system.\",\"authors\":\"Yanda Geng, Alan Tsidilkovski, Kevin Weber, Shouvik Mukherjee, Alessandro Restelli, Sarthak Subhankar\",\"doi\":\"10.1063/5.0211005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maintaining stable and precise alignment of a laser beam is crucial in many optical setups. In this work, we present a microcontroller-based rapid auto-alignment system that detects and corrects for drifts in a laser beam trajectory using a pair of two-dimensional duo-lateral position sensing detectors (PSDs) and a pair of mirror mounts with piezoelectric actuators. We develop hardware and software for interfacing with the PSDs and for controlling the motion of the piezoelectric mirror mounts. Our auto-alignment strategy-implemented as a state machine on the microcontroller by a real-time operating system kernel from FreeRTOS-is based on a simple linearized geometrical optical model. We benchmark our system using the standard case of coupling laser light efficiently into the guided mode of a single-mode fiber optic patch cable. We can recover the maximum fiber coupling efficiency in ∼10 seconds, even for a laser beam misaligned to the point of zero fiber coupling efficiency.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0211005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0211005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A compact and open-source microcontroller-based rapid auto-alignment system.
Maintaining stable and precise alignment of a laser beam is crucial in many optical setups. In this work, we present a microcontroller-based rapid auto-alignment system that detects and corrects for drifts in a laser beam trajectory using a pair of two-dimensional duo-lateral position sensing detectors (PSDs) and a pair of mirror mounts with piezoelectric actuators. We develop hardware and software for interfacing with the PSDs and for controlling the motion of the piezoelectric mirror mounts. Our auto-alignment strategy-implemented as a state machine on the microcontroller by a real-time operating system kernel from FreeRTOS-is based on a simple linearized geometrical optical model. We benchmark our system using the standard case of coupling laser light efficiently into the guided mode of a single-mode fiber optic patch cable. We can recover the maximum fiber coupling efficiency in ∼10 seconds, even for a laser beam misaligned to the point of zero fiber coupling efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.