氨基酸涡轮手性及其不对称控制

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-09-19 eCollection Date: 2024-01-01 DOI:10.34133/research.0474
Ting Xu, Yu Wang, Shengzhou Jin, Anis U Rahman, Xianghua Yan, Qingkai Yuan, Hao Liu, Jia-Yin Wang, Wenxin Yan, Yinchun Jiao, Ruibin Liang, Guigen Li
{"title":"氨基酸涡轮手性及其不对称控制","authors":"Ting Xu, Yu Wang, Shengzhou Jin, Anis U Rahman, Xianghua Yan, Qingkai Yuan, Hao Liu, Jia-Yin Wang, Wenxin Yan, Yinchun Jiao, Ruibin Liang, Guigen Li","doi":"10.34133/research.0474","DOIUrl":null,"url":null,"abstract":"<p><p>A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp<sup>3</sup>) center via C(sp<sup>2</sup>)-C(sp<sup>3</sup>) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (<i>PPP</i>) and counterclockwise (<i>MMM</i>), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp<sup>3</sup>) center, i.e., (<i>S</i>)- and (<i>R</i>)-sulfinyl centers led to the asymmetric formation of <i>PPP-</i> and <i>MMM</i>-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0474"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amino Turbo Chirality and Its Asymmetric Control.\",\"authors\":\"Ting Xu, Yu Wang, Shengzhou Jin, Anis U Rahman, Xianghua Yan, Qingkai Yuan, Hao Liu, Jia-Yin Wang, Wenxin Yan, Yinchun Jiao, Ruibin Liang, Guigen Li\",\"doi\":\"10.34133/research.0474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp<sup>3</sup>) center via C(sp<sup>2</sup>)-C(sp<sup>3</sup>) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (<i>PPP</i>) and counterclockwise (<i>MMM</i>), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp<sup>3</sup>) center, i.e., (<i>S</i>)- and (<i>R</i>)-sulfinyl centers led to the asymmetric formation of <i>PPP-</i> and <i>MMM</i>-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0474\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0474\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0474","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并不对称地合成了一系列含有中心手性、定向手性和涡轮手性 3 种手性元素的新靶标。这些手性的绝对构型和构象是通过手性磺胺辅助剂同时控制的,并通过 X 射线衍射分析明确确定。这些目标包括α-非天然氨基酸衍生物,它们可能在药物设计、发现和开发中发挥重要作用。涡轮框架的三个螺旋桨通过 C(sp2)-C(sp3) 键与一个手性 C(sp3) 中心共价连接,并沿着 C-N 轴,而其中一个螺旋桨的方向则远离同一个碳手性中心。涡轮手性或螺旋桨手性的特点是两种螺旋桨分子排列方式,分别是顺时针(PPP)和逆时针(MMM)。研究发现,涡轮立体性取决于磺酰亚胺辅助中心的手性,而不是手性 C(sp3)中心,即(S)-和(R)-亚磺酰亚胺中心分别导致 PPP 和 MMM 构型的不对称形成。计算研究了涡轮目标物沿 C-N 锚旋转障碍的相对能量,以及符合我们实验观察结果的两种对映体之间的过渡途径。预计这项工作未来将对化学、生物医学和材料科学产生广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amino Turbo Chirality and Its Asymmetric Control.

A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)-C(sp3) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
STAT2/SLC27A3/PINK1-Mediated Mitophagy Remodeling Lipid Metabolism Contributes to Pazopanib Resistance in Clear Cell Renal Cell Carcinoma. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1