非转移性肾癌手术切除后肿瘤预后预测模型:对当前文献的批判性回顾。

Zine-Eddine Khene, Raj Bhanvadia, Isamu Tachibana, Karim Bensalah, Yair Lotan, Vitaly Margulis
{"title":"非转移性肾癌手术切除后肿瘤预后预测模型:对当前文献的批判性回顾。","authors":"Zine-Eddine Khene, Raj Bhanvadia, Isamu Tachibana, Karim Bensalah, Yair Lotan, Vitaly Margulis","doi":"10.1016/j.urolonc.2024.08.014","DOIUrl":null,"url":null,"abstract":"<p><p>Prognostic models can be valuable for clinicians in counseling and monitoring patients after the surgical resection of nonmetastatic renal cell carcinoma (nmRCC). Over the years, several risk prediction models have been developed, evolving significantly in their ability to predict recurrence and overall survival following surgery. This review comprehensively evaluates and critically appraises current prognostic models for nm-RCC after nephrectomy. The last 2 decades have witnessed a notable increase in the development of various prognostic risk models for RCC, incorporating clinical, pathological, genomic, and molecular factors, primarily using retrospective data. Only a limited number of these models have been developed using prospective data, and their performance has been less effective than expected when applied to broader, real-life patient populations. Recently, artificial intelligence (AI), especially machine learning and deep learning algorithms, has emerged as a significant tool in creating survival prediction models. However, their widespread application remains constrained due to limited external validation, a lack of cost-effectiveness analysis, and unconfirmed clinical utility. Although numerous models that integrate clinical, pathological, and molecular data have been proposed for nm-RCC risk stratification, none have conclusively demonstrated practical effectiveness. As a result, current guidelines do not endorse a specific model. The ongoing development and validation of AI algorithms in RCC risk prediction are crucial areas for future research.</p>","PeriodicalId":23408,"journal":{"name":"Urologic Oncology-seminars and Original Investigations","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: A critical review of current literature.\",\"authors\":\"Zine-Eddine Khene, Raj Bhanvadia, Isamu Tachibana, Karim Bensalah, Yair Lotan, Vitaly Margulis\",\"doi\":\"10.1016/j.urolonc.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prognostic models can be valuable for clinicians in counseling and monitoring patients after the surgical resection of nonmetastatic renal cell carcinoma (nmRCC). Over the years, several risk prediction models have been developed, evolving significantly in their ability to predict recurrence and overall survival following surgery. This review comprehensively evaluates and critically appraises current prognostic models for nm-RCC after nephrectomy. The last 2 decades have witnessed a notable increase in the development of various prognostic risk models for RCC, incorporating clinical, pathological, genomic, and molecular factors, primarily using retrospective data. Only a limited number of these models have been developed using prospective data, and their performance has been less effective than expected when applied to broader, real-life patient populations. Recently, artificial intelligence (AI), especially machine learning and deep learning algorithms, has emerged as a significant tool in creating survival prediction models. However, their widespread application remains constrained due to limited external validation, a lack of cost-effectiveness analysis, and unconfirmed clinical utility. Although numerous models that integrate clinical, pathological, and molecular data have been proposed for nm-RCC risk stratification, none have conclusively demonstrated practical effectiveness. As a result, current guidelines do not endorse a specific model. The ongoing development and validation of AI algorithms in RCC risk prediction are crucial areas for future research.</p>\",\"PeriodicalId\":23408,\"journal\":{\"name\":\"Urologic Oncology-seminars and Original Investigations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urologic Oncology-seminars and Original Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.urolonc.2024.08.014\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urologic Oncology-seminars and Original Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.urolonc.2024.08.014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

预后模型对于临床医生在非转移性肾细胞癌(nmRCC)手术切除后为患者提供咨询和监测很有价值。多年来,人们开发了多种风险预测模型,这些模型在预测术后复发和总生存率方面有了显著的发展。这篇综述全面评估和批判性评价了目前肾切除术后 nm-RCC 的预后模型。在过去 20 年中,各种 RCC 预后风险模型的开发显著增加,这些模型结合了临床、病理、基因组和分子因素,主要使用回顾性数据。这些模型中只有少数是利用前瞻性数据开发的,在应用于更广泛的现实生活患者群体时,其效果不如预期。最近,人工智能(AI),尤其是机器学习和深度学习算法,已成为创建生存预测模型的重要工具。然而,由于外部验证有限、缺乏成本效益分析以及临床实用性尚未得到证实,这些模型的广泛应用仍然受到限制。虽然有许多整合了临床、病理和分子数据的模型被提出用于 nm-RCC 风险分层,但没有一个模型能最终证明其实际有效性。因此,目前的指南并未认可特定的模型。正在进行的 RCC 风险预测人工智能算法的开发和验证是未来研究的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: A critical review of current literature.

Prognostic models can be valuable for clinicians in counseling and monitoring patients after the surgical resection of nonmetastatic renal cell carcinoma (nmRCC). Over the years, several risk prediction models have been developed, evolving significantly in their ability to predict recurrence and overall survival following surgery. This review comprehensively evaluates and critically appraises current prognostic models for nm-RCC after nephrectomy. The last 2 decades have witnessed a notable increase in the development of various prognostic risk models for RCC, incorporating clinical, pathological, genomic, and molecular factors, primarily using retrospective data. Only a limited number of these models have been developed using prospective data, and their performance has been less effective than expected when applied to broader, real-life patient populations. Recently, artificial intelligence (AI), especially machine learning and deep learning algorithms, has emerged as a significant tool in creating survival prediction models. However, their widespread application remains constrained due to limited external validation, a lack of cost-effectiveness analysis, and unconfirmed clinical utility. Although numerous models that integrate clinical, pathological, and molecular data have been proposed for nm-RCC risk stratification, none have conclusively demonstrated practical effectiveness. As a result, current guidelines do not endorse a specific model. The ongoing development and validation of AI algorithms in RCC risk prediction are crucial areas for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
297
审稿时长
7.6 weeks
期刊介绍: Urologic Oncology: Seminars and Original Investigations is the official journal of the Society of Urologic Oncology. The journal publishes practical, timely, and relevant clinical and basic science research articles which address any aspect of urologic oncology. Each issue comprises original research, news and topics, survey articles providing short commentaries on other important articles in the urologic oncology literature, and reviews including an in-depth Seminar examining a specific clinical dilemma. The journal periodically publishes supplement issues devoted to areas of current interest to the urologic oncology community. Articles published are of interest to researchers and the clinicians involved in the practice of urologic oncology including urologists, oncologists, and radiologists.
期刊最新文献
Editorial Board Table of Contents Cover 2 - Masthead 2023 Star Reviewers for Urologic Oncology Cover 3 - Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1