{"title":"LPAR1 的下调促进甲状腺乳头状癌细胞的侵袭行为","authors":"Zahra Bokaii Hosseini, Fatemeh Rajabi, Reza Morovatshoar, Mahshad Ashrafpour, Panteha Behboodi, Dorsa Zareie, Mohammad Natami","doi":"10.1177/11769351241277012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lysophosphatidic acid receptor 1 (LPAR1) has been identified as a biomarker in various cancer types. However, its biological function in papillary thyroid carcinoma (PTC) remains unknown.</p><p><strong>Methods: </strong>LPAR1 was identified as a key regulator of epithelial-mesenchymal transition (EMT) in PTC cells through bioinformatics analysis of TCGA and GEO datasets. PPI analysis and correlation with immune infiltrates were also conducted. LPAR1 expression was evaluated using Gepia2 and GTEx, and miRNA target gene prediction was done with multiMiR. To assess the expression of LPAR1, we extracted total RNA from both the BCPAP cell line and the normal human thyroid epithelial cell line Nthy-ori 3-1. The levels of LPAR1 expression were then measured using quantitative real-time polymerase chain reaction (qRT-PCR) in the BCPAP cell line, with a comparison to the Nthy-ori 3-1 cell line.</p><p><strong>Results: </strong>1081 genes were upregulated, and 544 were downregulated compared to normal tissue. LPAR1 was identified as a key candidate by analyzing the TCGA and GEO datasets. PPI data analysis showed interactions with metastasis-related proteins. Functional enrichment analysis indicated involvement in signaling pathways like phospholipase D and actin cytoskeleton regulation. LPAR1 expression correlated positively with immune infiltrates such as CD4<sup>+</sup> T cells, macrophages, neutrophils, and myeloid dendritic cells but negatively with B cells. Additionally, miR-221-5p was predicted to target LPAR1 in PTC. Furthermore, our experimental data demonstrated that LPAR1 was under-expressed in the PTC cell line compared to the nonmalignant one (<i>P</i> < .01).</p><p><strong>Conclusion: </strong>LPAR1 suppresses metastasis and is linked to EMT, as evidenced by the decreased LPAR1 expression and increased miR-221-5p in PTC. This suggests its potential as a biomarker for diagnosis and prognosis and as a therapeutic target for EMT.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Downregulation of LPAR1 Promotes Invasive Behavior in Papillary Thyroid Carcinoma Cells.\",\"authors\":\"Zahra Bokaii Hosseini, Fatemeh Rajabi, Reza Morovatshoar, Mahshad Ashrafpour, Panteha Behboodi, Dorsa Zareie, Mohammad Natami\",\"doi\":\"10.1177/11769351241277012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lysophosphatidic acid receptor 1 (LPAR1) has been identified as a biomarker in various cancer types. However, its biological function in papillary thyroid carcinoma (PTC) remains unknown.</p><p><strong>Methods: </strong>LPAR1 was identified as a key regulator of epithelial-mesenchymal transition (EMT) in PTC cells through bioinformatics analysis of TCGA and GEO datasets. PPI analysis and correlation with immune infiltrates were also conducted. LPAR1 expression was evaluated using Gepia2 and GTEx, and miRNA target gene prediction was done with multiMiR. To assess the expression of LPAR1, we extracted total RNA from both the BCPAP cell line and the normal human thyroid epithelial cell line Nthy-ori 3-1. The levels of LPAR1 expression were then measured using quantitative real-time polymerase chain reaction (qRT-PCR) in the BCPAP cell line, with a comparison to the Nthy-ori 3-1 cell line.</p><p><strong>Results: </strong>1081 genes were upregulated, and 544 were downregulated compared to normal tissue. LPAR1 was identified as a key candidate by analyzing the TCGA and GEO datasets. PPI data analysis showed interactions with metastasis-related proteins. Functional enrichment analysis indicated involvement in signaling pathways like phospholipase D and actin cytoskeleton regulation. LPAR1 expression correlated positively with immune infiltrates such as CD4<sup>+</sup> T cells, macrophages, neutrophils, and myeloid dendritic cells but negatively with B cells. Additionally, miR-221-5p was predicted to target LPAR1 in PTC. Furthermore, our experimental data demonstrated that LPAR1 was under-expressed in the PTC cell line compared to the nonmalignant one (<i>P</i> < .01).</p><p><strong>Conclusion: </strong>LPAR1 suppresses metastasis and is linked to EMT, as evidenced by the decreased LPAR1 expression and increased miR-221-5p in PTC. This suggests its potential as a biomarker for diagnosis and prognosis and as a therapeutic target for EMT.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351241277012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241277012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Downregulation of LPAR1 Promotes Invasive Behavior in Papillary Thyroid Carcinoma Cells.
Background: Lysophosphatidic acid receptor 1 (LPAR1) has been identified as a biomarker in various cancer types. However, its biological function in papillary thyroid carcinoma (PTC) remains unknown.
Methods: LPAR1 was identified as a key regulator of epithelial-mesenchymal transition (EMT) in PTC cells through bioinformatics analysis of TCGA and GEO datasets. PPI analysis and correlation with immune infiltrates were also conducted. LPAR1 expression was evaluated using Gepia2 and GTEx, and miRNA target gene prediction was done with multiMiR. To assess the expression of LPAR1, we extracted total RNA from both the BCPAP cell line and the normal human thyroid epithelial cell line Nthy-ori 3-1. The levels of LPAR1 expression were then measured using quantitative real-time polymerase chain reaction (qRT-PCR) in the BCPAP cell line, with a comparison to the Nthy-ori 3-1 cell line.
Results: 1081 genes were upregulated, and 544 were downregulated compared to normal tissue. LPAR1 was identified as a key candidate by analyzing the TCGA and GEO datasets. PPI data analysis showed interactions with metastasis-related proteins. Functional enrichment analysis indicated involvement in signaling pathways like phospholipase D and actin cytoskeleton regulation. LPAR1 expression correlated positively with immune infiltrates such as CD4+ T cells, macrophages, neutrophils, and myeloid dendritic cells but negatively with B cells. Additionally, miR-221-5p was predicted to target LPAR1 in PTC. Furthermore, our experimental data demonstrated that LPAR1 was under-expressed in the PTC cell line compared to the nonmalignant one (P < .01).
Conclusion: LPAR1 suppresses metastasis and is linked to EMT, as evidenced by the decreased LPAR1 expression and increased miR-221-5p in PTC. This suggests its potential as a biomarker for diagnosis and prognosis and as a therapeutic target for EMT.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.