[根据术前数据预测甲状腺乳头状癌复发]。

Q4 Medicine Khirurgiya Pub Date : 2024-01-01 DOI:10.17116/hirurgia202409176
N S Kuznetsov, M V Skibitskaya, A P Vaynshtok, E A Vashchenko
{"title":"[根据术前数据预测甲状腺乳头状癌复发]。","authors":"N S Kuznetsov, M V Skibitskaya, A P Vaynshtok, E A Vashchenko","doi":"10.17116/hirurgia202409176","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To create a formalized method for predicting papillary thyroid cancer recurrence after hemithyroidectomy based on preoperative data.</p><p><strong>Material and methods: </strong>At this stage of the study, we selected 101 patients with papillary thyroid cancer who underwent surgical treatment in 2017-2023. Recurrence was observed in in 47 patients. Fifty-four patients had no recurrence within 5 years after surgical treatment, i.e. these patients underwent surgery in 2017-2018. To find prediction rules, we used original classification method based on searching for subsets of variables and piecewise linear rules separating classes in pairs with subsequent voting of such rules to make a decision.</p><p><strong>Results: </strong>The exam was carried out using a training sample (101 cases) and sliding control method (10 tests on 10 random cases). On the training sample, sensitivity of predictive algorithm was 91%, specificity 78% and error rate 13%. The aggregated result of 10 trials using sliding control method revealed sensitivity of predictive algorithm 86%, specificity 75% and error rate 15%. This result is close to overall sample and confirms the effectiveness of this method for predicting recurrence.</p><p><strong>Conclusion: </strong>The pilot experiments revealed the patterns in data for potential prediction of recurrence based on preoperative indicators. Further study of this problem may be valuable for decision-making and adjustments in the management of patients with papillary thyroid cancer.</p>","PeriodicalId":35986,"journal":{"name":"Khirurgiya","volume":" 9","pages":"76-85"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Prediction of papillary thyroid cancer recurrence according to preoperative data].\",\"authors\":\"N S Kuznetsov, M V Skibitskaya, A P Vaynshtok, E A Vashchenko\",\"doi\":\"10.17116/hirurgia202409176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To create a formalized method for predicting papillary thyroid cancer recurrence after hemithyroidectomy based on preoperative data.</p><p><strong>Material and methods: </strong>At this stage of the study, we selected 101 patients with papillary thyroid cancer who underwent surgical treatment in 2017-2023. Recurrence was observed in in 47 patients. Fifty-four patients had no recurrence within 5 years after surgical treatment, i.e. these patients underwent surgery in 2017-2018. To find prediction rules, we used original classification method based on searching for subsets of variables and piecewise linear rules separating classes in pairs with subsequent voting of such rules to make a decision.</p><p><strong>Results: </strong>The exam was carried out using a training sample (101 cases) and sliding control method (10 tests on 10 random cases). On the training sample, sensitivity of predictive algorithm was 91%, specificity 78% and error rate 13%. The aggregated result of 10 trials using sliding control method revealed sensitivity of predictive algorithm 86%, specificity 75% and error rate 15%. This result is close to overall sample and confirms the effectiveness of this method for predicting recurrence.</p><p><strong>Conclusion: </strong>The pilot experiments revealed the patterns in data for potential prediction of recurrence based on preoperative indicators. Further study of this problem may be valuable for decision-making and adjustments in the management of patients with papillary thyroid cancer.</p>\",\"PeriodicalId\":35986,\"journal\":{\"name\":\"Khirurgiya\",\"volume\":\" 9\",\"pages\":\"76-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Khirurgiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/hirurgia202409176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Khirurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/hirurgia202409176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的根据术前数据,建立预测甲状腺乳头状癌半甲状腺切除术后复发的正规化方法:在本研究阶段,我们选取了2017-2023年接受手术治疗的101例甲状腺乳头状癌患者。47例患者出现复发。54名患者在手术治疗后5年内没有复发,即这些患者在2017-2018年接受了手术治疗。为了找到预测规则,我们使用了原始分类方法,该方法基于搜索变量子集和成对分离类别的片断线性规则,随后对这些规则进行投票以做出决定:测试使用了训练样本(101 个案例)和滑动控制法(对 10 个随机案例进行 10 次测试)。在训练样本上,预测算法的灵敏度为 91%,特异度为 78%,错误率为 13%。使用滑动控制法进行的 10 次测试的综合结果显示,预测算法的灵敏度为 86%,特异度为 75%,误差率为 15%。这一结果与总体样本接近,证实了该方法在预测复发方面的有效性:试点实验揭示了根据术前指标预测复发的潜在数据模式。对这一问题的进一步研究可能对甲状腺乳头状癌患者的管理决策和调整很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Prediction of papillary thyroid cancer recurrence according to preoperative data].

Objective: To create a formalized method for predicting papillary thyroid cancer recurrence after hemithyroidectomy based on preoperative data.

Material and methods: At this stage of the study, we selected 101 patients with papillary thyroid cancer who underwent surgical treatment in 2017-2023. Recurrence was observed in in 47 patients. Fifty-four patients had no recurrence within 5 years after surgical treatment, i.e. these patients underwent surgery in 2017-2018. To find prediction rules, we used original classification method based on searching for subsets of variables and piecewise linear rules separating classes in pairs with subsequent voting of such rules to make a decision.

Results: The exam was carried out using a training sample (101 cases) and sliding control method (10 tests on 10 random cases). On the training sample, sensitivity of predictive algorithm was 91%, specificity 78% and error rate 13%. The aggregated result of 10 trials using sliding control method revealed sensitivity of predictive algorithm 86%, specificity 75% and error rate 15%. This result is close to overall sample and confirms the effectiveness of this method for predicting recurrence.

Conclusion: The pilot experiments revealed the patterns in data for potential prediction of recurrence based on preoperative indicators. Further study of this problem may be valuable for decision-making and adjustments in the management of patients with papillary thyroid cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Khirurgiya
Khirurgiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
161
期刊介绍: Хирургия отдельных областей сердце, сосуды легкие пищевод молочная железа желудок и двенадцатиперстная кишка кишечник желчевыводящие пути печень
期刊最新文献
[Endoscopic stenting for malignant pancreatobiliary strictures]. [Ankle replacement for severe post-traumatic deformation of the distal tibia: a case report]. [Comparative analysis of in-hospital and long-term results of patients with acute dysfunction of coronary bypass grafts depending on treatment tactics]. [Efficacy and safety of surgical treatment of patients with pathological tortuosity of the internal carotid artery]. [Endoscopic vacuum therapy in minimally invasive treatment of esophageal perforations].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1