光子计数探测器的能量窗口数量:真的越多越好吗?

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-12-01 Epub Date: 2024-09-20 DOI:10.1117/1.JMI.11.S1.S12807
Katsuyuki Taguchi
{"title":"光子计数探测器的能量窗口数量:真的越多越好吗?","authors":"Katsuyuki Taguchi","doi":"10.1117/1.JMI.11.S1.S12807","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>It has been debated whether photon counting detectors (PCDs) with moderate numbers of energy windows ( <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> ) perform better than PCDs with higher <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> . A higher <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> results in fewer photons in each energy window, which degrades the signal-to-noise ratio of each datum. Unlike energy-integrating detectors, PCDs add very little electronic noise to measured counts; however, there exists electronic noise on the pulse train, to which multiple energy thresholds are applied to count photons. The noise may increase the uncertainty of counts within energy windows; however, this effect has not been studied in the context of spectral imaging tasks. We aim to investigate the effect of <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> on the quality of the spectral information in the presence of electronic noise.</p><p><strong>Approach: </strong>We obtained the following three types of PCD data with various <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> (= 2 to 24) and noise levels using a Monte Carlo simulation: (A) A PCD with no electronic noise; (B) realistic PCDs with electronic noise added to the pulse train; and (C) hypothetical PCDs with electronic noise added to each energy window's output, similar to energy-integrating detectors. We evaluated the Cramér-Rao lower bound (CRLB) of estimation for the following two spectral imaging tasks: (a) water-bone material decomposition and (b) K-edge imaging.</p><p><strong>Results: </strong>For both the e-noise-free and realistic PCDs, the CRLB improved monotonically with increasing <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> for both tasks. In contrast, a moderate <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> provided the best CRLB for the hypothetical PCDs, and the optimal <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> was smaller when electronic noise was larger. Adding one energy window to the minimum necessary <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> for a given task gained 66.2% to 68.7% of the improvement <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> <mo>=</mo> <mn>24</mn></mrow> </math> provided.</p><p><strong>Conclusion: </strong>For realistic PCDs, the quality of the spectral information monotonically improves with increasing <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> .</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 Suppl 1","pages":"S12807"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Number of energy windows for photon counting detectors: is more actually more?\",\"authors\":\"Katsuyuki Taguchi\",\"doi\":\"10.1117/1.JMI.11.S1.S12807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>It has been debated whether photon counting detectors (PCDs) with moderate numbers of energy windows ( <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> ) perform better than PCDs with higher <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> . A higher <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> results in fewer photons in each energy window, which degrades the signal-to-noise ratio of each datum. Unlike energy-integrating detectors, PCDs add very little electronic noise to measured counts; however, there exists electronic noise on the pulse train, to which multiple energy thresholds are applied to count photons. The noise may increase the uncertainty of counts within energy windows; however, this effect has not been studied in the context of spectral imaging tasks. We aim to investigate the effect of <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> on the quality of the spectral information in the presence of electronic noise.</p><p><strong>Approach: </strong>We obtained the following three types of PCD data with various <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> (= 2 to 24) and noise levels using a Monte Carlo simulation: (A) A PCD with no electronic noise; (B) realistic PCDs with electronic noise added to the pulse train; and (C) hypothetical PCDs with electronic noise added to each energy window's output, similar to energy-integrating detectors. We evaluated the Cramér-Rao lower bound (CRLB) of estimation for the following two spectral imaging tasks: (a) water-bone material decomposition and (b) K-edge imaging.</p><p><strong>Results: </strong>For both the e-noise-free and realistic PCDs, the CRLB improved monotonically with increasing <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> for both tasks. In contrast, a moderate <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> provided the best CRLB for the hypothetical PCDs, and the optimal <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> was smaller when electronic noise was larger. Adding one energy window to the minimum necessary <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> for a given task gained 66.2% to 68.7% of the improvement <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> <mo>=</mo> <mn>24</mn></mrow> </math> provided.</p><p><strong>Conclusion: </strong>For realistic PCDs, the quality of the spectral information monotonically improves with increasing <math> <mrow><msub><mi>N</mi> <mi>E</mi></msub> </mrow> </math> .</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 Suppl 1\",\"pages\":\"S12807\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.S1.S12807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.S1.S12807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:人们一直在争论,具有中等数量能量窗口(N E)的光子计数探测器(PCD)是否比具有较高 N E 的 PCD 性能更好。较高的 N E 会导致每个能量窗口中的光子数量减少,从而降低每个数据的信噪比。与能量积分探测器不同,PCD 对测量计数的电子噪声影响很小;但脉冲序列上存在电子噪声,对其应用多个能量阈值来计数光子。噪声可能会增加能量窗口内计数的不确定性;然而,在光谱成像任务中还没有研究过这种影响。我们旨在研究在存在电子噪声的情况下,N E 对光谱信息质量的影响:我们使用蒙特卡洛模拟法获得了以下三种具有不同 N E(= 2 到 24)和噪声水平的 PCD 数据:(A) 无电子噪声的 PCD;(B) 在脉冲序列中加入电子噪声的现实 PCD;(C) 在每个能量窗口输出中加入电子噪声的假设 PCD,类似于能量积分探测器。我们对以下两项光谱成像任务的估计克拉梅尔-拉奥下限(CRLB)进行了评估:(a)水骨材料分解和(b)K 边成像:对于无电子噪声和现实的 PCD,这两项任务的 CRLB 都随着 N E 的增加而单调提高。相比之下,适中的 N E 为假定 PCD 提供了最佳 CRLB,当电子噪声较大时,最佳 N E 更小。在特定任务所需的最小 N E 的基础上增加一个能量窗口,可获得 N E = 24 所带来的 66.2% 至 68.7% 的改进:结论:对于现实的 PCD,光谱信息的质量随着 N E 的增加而单调改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Number of energy windows for photon counting detectors: is more actually more?

Purpose: It has been debated whether photon counting detectors (PCDs) with moderate numbers of energy windows ( N E ) perform better than PCDs with higher N E . A higher N E results in fewer photons in each energy window, which degrades the signal-to-noise ratio of each datum. Unlike energy-integrating detectors, PCDs add very little electronic noise to measured counts; however, there exists electronic noise on the pulse train, to which multiple energy thresholds are applied to count photons. The noise may increase the uncertainty of counts within energy windows; however, this effect has not been studied in the context of spectral imaging tasks. We aim to investigate the effect of N E on the quality of the spectral information in the presence of electronic noise.

Approach: We obtained the following three types of PCD data with various N E (= 2 to 24) and noise levels using a Monte Carlo simulation: (A) A PCD with no electronic noise; (B) realistic PCDs with electronic noise added to the pulse train; and (C) hypothetical PCDs with electronic noise added to each energy window's output, similar to energy-integrating detectors. We evaluated the Cramér-Rao lower bound (CRLB) of estimation for the following two spectral imaging tasks: (a) water-bone material decomposition and (b) K-edge imaging.

Results: For both the e-noise-free and realistic PCDs, the CRLB improved monotonically with increasing N E for both tasks. In contrast, a moderate N E provided the best CRLB for the hypothetical PCDs, and the optimal N E was smaller when electronic noise was larger. Adding one energy window to the minimum necessary N E for a given task gained 66.2% to 68.7% of the improvement N E = 24 provided.

Conclusion: For realistic PCDs, the quality of the spectral information monotonically improves with increasing N E .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1