{"title":"DNase I 在对乙酰氨基酚引起的肝损伤后 DNA 降解和游离 DNA 生成中的作用","authors":"Shuhei Takada, Shuhei Ogawa, Ryushin Mizuta","doi":"10.1292/jvms.23-0344","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-free DNA (cfDNA), the DNA in the blood circulation, is a useful marker for diagnosing hereditary diseases and tumors. However, the mechanisms underlying the generation of cfDNA are not completely understood. We previously studied DNases [Caspase-activated DNase (CAD), DNase1L3, and DNase I] and reported that in acetaminophen-induced liver necrosis, DNase1L3 was the main endonuclease generating cfDNA, with CAD playing a supporting role. In this study, we generated triple-gene knockout (TKO) mice, Cad<sup>-/-</sup>DNase1L3<sup>-/-</sup>DNase1<sup>-/-</sup>, and found that DNase I also contributed to cfDNA generation. Given that a defect in DNase1L3 or DNase I is involved in autoimmune diseases, TKO mice would be useful as a disease model and tool for identifying the in vivo roles of endonucleases.</p>","PeriodicalId":49959,"journal":{"name":"Journal of Veterinary Medical Science","volume":" ","pages":"1124-1128"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of DNase I in DNA degradation and cell-free DNA generation after acetaminophen-induced hepatic injury.\",\"authors\":\"Shuhei Takada, Shuhei Ogawa, Ryushin Mizuta\",\"doi\":\"10.1292/jvms.23-0344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-free DNA (cfDNA), the DNA in the blood circulation, is a useful marker for diagnosing hereditary diseases and tumors. However, the mechanisms underlying the generation of cfDNA are not completely understood. We previously studied DNases [Caspase-activated DNase (CAD), DNase1L3, and DNase I] and reported that in acetaminophen-induced liver necrosis, DNase1L3 was the main endonuclease generating cfDNA, with CAD playing a supporting role. In this study, we generated triple-gene knockout (TKO) mice, Cad<sup>-/-</sup>DNase1L3<sup>-/-</sup>DNase1<sup>-/-</sup>, and found that DNase I also contributed to cfDNA generation. Given that a defect in DNase1L3 or DNase I is involved in autoimmune diseases, TKO mice would be useful as a disease model and tool for identifying the in vivo roles of endonucleases.</p>\",\"PeriodicalId\":49959,\"journal\":{\"name\":\"Journal of Veterinary Medical Science\",\"volume\":\" \",\"pages\":\"1124-1128\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Veterinary Medical Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1292/jvms.23-0344\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Veterinary Medical Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1292/jvms.23-0344","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Role of DNase I in DNA degradation and cell-free DNA generation after acetaminophen-induced hepatic injury.
Cell-free DNA (cfDNA), the DNA in the blood circulation, is a useful marker for diagnosing hereditary diseases and tumors. However, the mechanisms underlying the generation of cfDNA are not completely understood. We previously studied DNases [Caspase-activated DNase (CAD), DNase1L3, and DNase I] and reported that in acetaminophen-induced liver necrosis, DNase1L3 was the main endonuclease generating cfDNA, with CAD playing a supporting role. In this study, we generated triple-gene knockout (TKO) mice, Cad-/-DNase1L3-/-DNase1-/-, and found that DNase I also contributed to cfDNA generation. Given that a defect in DNase1L3 or DNase I is involved in autoimmune diseases, TKO mice would be useful as a disease model and tool for identifying the in vivo roles of endonucleases.
期刊介绍:
JVMS is a peer-reviewed journal and publishes a variety of papers on veterinary science from basic research to applied science and clinical research. JVMS is published monthly and consists of twelve issues per year. Papers are from the areas of anatomy, physiology, pharmacology, toxicology, pathology, immunology, microbiology, virology, parasitology, internal medicine, surgery, clinical pathology, theriogenology, avian disease, public health, ethology, and laboratory animal science. Although JVMS has played a role in publishing the scientific achievements of Japanese researchers and clinicians for many years, it now also accepts papers submitted from all over the world.