{"title":"胰腺可塑性驱动β细胞再生","authors":"Adrián Holguín-Horcajo, Rocio Sancho, Meritxell Rovira","doi":"10.1007/978-3-031-62232-8_4","DOIUrl":null,"url":null,"abstract":"<p><p>The pancreas has been considered a non-regenerative organ. β cells lost in diabetes are not replaced due to the inability of the pancreas to regenerate. However, ample evidence generated in the last few decades using murine models has demonstrated that the pancreas has a remarkable plasticity wherein differentiated cells can change cell fate toward a β-like cell phenotype. Although this process is observed after using rather artificial stimuli and the conversion efficiency is very limited, these findings have shed some light on novel pathways for β-cell regeneration. In this chapter, we will summarize the different cellular interconversion processes described to date, the experimental details and molecular regulation of such interconversions, and the genomic technologies that have allowed the identification of potential new ways to generate β cells.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Cell Regeneration Is Driven by Pancreatic Plasticity.\",\"authors\":\"Adrián Holguín-Horcajo, Rocio Sancho, Meritxell Rovira\",\"doi\":\"10.1007/978-3-031-62232-8_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pancreas has been considered a non-regenerative organ. β cells lost in diabetes are not replaced due to the inability of the pancreas to regenerate. However, ample evidence generated in the last few decades using murine models has demonstrated that the pancreas has a remarkable plasticity wherein differentiated cells can change cell fate toward a β-like cell phenotype. Although this process is observed after using rather artificial stimuli and the conversion efficiency is very limited, these findings have shed some light on novel pathways for β-cell regeneration. In this chapter, we will summarize the different cellular interconversion processes described to date, the experimental details and molecular regulation of such interconversions, and the genomic technologies that have allowed the identification of potential new ways to generate β cells.</p>\",\"PeriodicalId\":50879,\"journal\":{\"name\":\"Advances in Anatomy Embryology and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Anatomy Embryology and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-62232-8_4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Anatomy Embryology and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/978-3-031-62232-8_4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
β-Cell Regeneration Is Driven by Pancreatic Plasticity.
The pancreas has been considered a non-regenerative organ. β cells lost in diabetes are not replaced due to the inability of the pancreas to regenerate. However, ample evidence generated in the last few decades using murine models has demonstrated that the pancreas has a remarkable plasticity wherein differentiated cells can change cell fate toward a β-like cell phenotype. Although this process is observed after using rather artificial stimuli and the conversion efficiency is very limited, these findings have shed some light on novel pathways for β-cell regeneration. In this chapter, we will summarize the different cellular interconversion processes described to date, the experimental details and molecular regulation of such interconversions, and the genomic technologies that have allowed the identification of potential new ways to generate β cells.
期刊介绍:
"Advances in Anatomy, Embryology and Cell Biology" presents critical reviews on all topical fields of normal and experimental anatomy including cell biology. The multi-perspective presentation of morphological aspects of basic biological phenomen in the human constitutes the main focus of the series. The contributions re-evaluate the latest findings and show ways for further research.