多维分布的多变量标量回归应用于体育锻炼与认知功能之间关系的建模。

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-09-22 DOI:10.1002/bimj.202400042
Rahul Ghosal, Marcos Matabuena
{"title":"多维分布的多变量标量回归应用于体育锻炼与认知功能之间关系的建模。","authors":"Rahul Ghosal,&nbsp;Marcos Matabuena","doi":"10.1002/bimj.202400042","DOIUrl":null,"url":null,"abstract":"<p>We develop a new method for multivariate scalar on multidimensional distribution regression. Traditional approaches typically analyze isolated univariate scalar outcomes or consider unidimensional distributional representations as predictors. However, these approaches are suboptimal because (i) they fail to utilize the dependence between the distributional predictors and (ii) neglect the correlation structure of the response. To overcome these limitations, we propose a multivariate distributional analysis framework that harnesses the power of multivariate density functions and multitask learning. We develop a computationally efficient semiparametric estimation method for modeling the effect of the latent joint density on the multivariate response of interest. Additionally, we introduce a new conformal prediction algorithm for quantifying the uncertainty of our multivariate predictions based on subject characteristics and individualized distributional predictors, providing valuable insights into the conditional distribution of the response. We validate the effectiveness of our proposed method through comprehensive numerical simulations, clearly demonstrating its superior performance compared to traditional methods. The application of the proposed method is demonstrated on triaxial accelerometer data from the National Health and Nutrition Examination Survey 2011–2014 for modeling the association between cognitive scores across various domains and distributional representation of physical activity among the older adult population. Our results highlight the advantages of the proposed approach, emphasizing the significance of incorporating multidimensional distributional information in the triaxial accelerometer data.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400042","citationCount":"0","resultStr":"{\"title\":\"Multivariate Scalar on Multidimensional Distribution Regression With Application to Modeling the Association Between Physical Activity and Cognitive Functions\",\"authors\":\"Rahul Ghosal,&nbsp;Marcos Matabuena\",\"doi\":\"10.1002/bimj.202400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a new method for multivariate scalar on multidimensional distribution regression. Traditional approaches typically analyze isolated univariate scalar outcomes or consider unidimensional distributional representations as predictors. However, these approaches are suboptimal because (i) they fail to utilize the dependence between the distributional predictors and (ii) neglect the correlation structure of the response. To overcome these limitations, we propose a multivariate distributional analysis framework that harnesses the power of multivariate density functions and multitask learning. We develop a computationally efficient semiparametric estimation method for modeling the effect of the latent joint density on the multivariate response of interest. Additionally, we introduce a new conformal prediction algorithm for quantifying the uncertainty of our multivariate predictions based on subject characteristics and individualized distributional predictors, providing valuable insights into the conditional distribution of the response. We validate the effectiveness of our proposed method through comprehensive numerical simulations, clearly demonstrating its superior performance compared to traditional methods. The application of the proposed method is demonstrated on triaxial accelerometer data from the National Health and Nutrition Examination Survey 2011–2014 for modeling the association between cognitive scores across various domains and distributional representation of physical activity among the older adult population. Our results highlight the advantages of the proposed approach, emphasizing the significance of incorporating multidimensional distributional information in the triaxial accelerometer data.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们为多维标量的多维分布回归开发了一种新方法。传统方法通常分析孤立的单变量标量结果,或将单维分布表示视为预测因子。然而,这些方法并不理想,因为 (i) 它们未能利用分布预测因子之间的依赖关系,(ii) 忽视了响应的相关结构。为了克服这些局限性,我们提出了一个多变量分布分析框架,利用多变量密度函数和多任务学习的力量。我们开发了一种计算高效的半参数估计方法,用于模拟潜在联合密度对相关多元响应的影响。此外,我们还引入了一种新的共形预测算法,用于量化基于受试者特征和个性化分布预测因子的多元预测的不确定性,从而为了解反应的条件分布提供有价值的见解。我们通过全面的数值模拟验证了我们提出的方法的有效性,清楚地证明了它与传统方法相比的优越性能。我们在 2011-2014 年全国健康与营养调查的三轴加速度计数据上演示了所提方法的应用,以模拟老年人群中不同领域的认知分数与体力活动分布表示之间的关联。我们的结果凸显了所提方法的优势,强调了在三轴加速度计数据中纳入多维分布信息的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate Scalar on Multidimensional Distribution Regression With Application to Modeling the Association Between Physical Activity and Cognitive Functions

We develop a new method for multivariate scalar on multidimensional distribution regression. Traditional approaches typically analyze isolated univariate scalar outcomes or consider unidimensional distributional representations as predictors. However, these approaches are suboptimal because (i) they fail to utilize the dependence between the distributional predictors and (ii) neglect the correlation structure of the response. To overcome these limitations, we propose a multivariate distributional analysis framework that harnesses the power of multivariate density functions and multitask learning. We develop a computationally efficient semiparametric estimation method for modeling the effect of the latent joint density on the multivariate response of interest. Additionally, we introduce a new conformal prediction algorithm for quantifying the uncertainty of our multivariate predictions based on subject characteristics and individualized distributional predictors, providing valuable insights into the conditional distribution of the response. We validate the effectiveness of our proposed method through comprehensive numerical simulations, clearly demonstrating its superior performance compared to traditional methods. The application of the proposed method is demonstrated on triaxial accelerometer data from the National Health and Nutrition Examination Survey 2011–2014 for modeling the association between cognitive scores across various domains and distributional representation of physical activity among the older adult population. Our results highlight the advantages of the proposed approach, emphasizing the significance of incorporating multidimensional distributional information in the triaxial accelerometer data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Post-Estimation Shrinkage in Full and Selected Linear Regression Models in Low-Dimensional Data Revisited Functional Data Analysis: An Introduction and Recent Developments Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study A Network-Constrain Weibull AFT Model for Biomarkers Discovery Multivariate Scalar on Multidimensional Distribution Regression With Application to Modeling the Association Between Physical Activity and Cognitive Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1