Lingyu Xu, Chenyu Li, Shuang Gao, Long Zhao, Chen Guan, Xuefei Shen, Zhihui Zhu, Cheng Guo, Liwei Zhang, Chengyu Yang, Quandong Bu, Bin Zhou, Yan Xu
{"title":"使用可解释的机器学习算法个性化预测肾切除术后的长期肾功能预后:病例对照研究。","authors":"Lingyu Xu, Chenyu Li, Shuang Gao, Long Zhao, Chen Guan, Xuefei Shen, Zhihui Zhu, Cheng Guo, Liwei Zhang, Chengyu Yang, Quandong Bu, Bin Zhou, Yan Xu","doi":"10.2196/52837","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes.</p><p><strong>Objective: </strong>This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction.</p><p><strong>Results: </strong>The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model's competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks.</p><p><strong>Conclusions: </strong>An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM model, can assist in formulating more personalized and evidence-based clinical strategies.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52837"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study.\",\"authors\":\"Lingyu Xu, Chenyu Li, Shuang Gao, Long Zhao, Chen Guan, Xuefei Shen, Zhihui Zhu, Cheng Guo, Liwei Zhang, Chengyu Yang, Quandong Bu, Bin Zhou, Yan Xu\",\"doi\":\"10.2196/52837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes.</p><p><strong>Objective: </strong>This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction.</p><p><strong>Results: </strong>The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model's competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks.</p><p><strong>Conclusions: </strong>An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM model, can assist in formulating more personalized and evidence-based clinical strategies.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"12 \",\"pages\":\"e52837\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/52837\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/52837","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study.
Background: Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes.
Objective: This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.
Methods: We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction.
Results: The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model's competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks.
Conclusions: An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM model, can assist in formulating more personalized and evidence-based clinical strategies.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.