Ujwal Boddeti, Jenna Langbein, Darrian McAfee, Marcelle Altshuler, Muzna Bachani, Hitten P Zaveri, Dennis Spencer, Kareem A Zaghloul, Alexander Ksendzovsky
{"title":"使用微电极阵列模拟神经元-胶质细胞培养物中的癫痫发作网络。","authors":"Ujwal Boddeti, Jenna Langbein, Darrian McAfee, Marcelle Altshuler, Muzna Bachani, Hitten P Zaveri, Dennis Spencer, Kareem A Zaghloul, Alexander Ksendzovsky","doi":"10.3389/fnetp.2024.1441345","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 <math><mi>%</mi></math> of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks <i>in vitro</i>. As such, we sought to develop a novel <i>in vitro</i> MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust <i>in vitro</i> seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling seizure networks in neuron-glia cultures using microelectrode arrays.\",\"authors\":\"Ujwal Boddeti, Jenna Langbein, Darrian McAfee, Marcelle Altshuler, Muzna Bachani, Hitten P Zaveri, Dennis Spencer, Kareem A Zaghloul, Alexander Ksendzovsky\",\"doi\":\"10.3389/fnetp.2024.1441345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 <math><mi>%</mi></math> of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks <i>in vitro</i>. As such, we sought to develop a novel <i>in vitro</i> MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust <i>in vitro</i> seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2024.1441345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1441345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling seizure networks in neuron-glia cultures using microelectrode arrays.
Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks in vitro. As such, we sought to develop a novel in vitro MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust in vitro seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.