利用物理测量和记录分析进行低成本、便捷的疾病筛查。

PLOS digital health Pub Date : 2024-09-19 eCollection Date: 2024-09-01 DOI:10.1371/journal.pdig.0000574
Jay Chandra, Raymond Lin, Devin Kancherla, Sophia Scott, Daniel Sul, Daniela Andrade, Sammer Marzouk, Jay M Iyer, William Wasswa, Cleva Villanueva, Leo Anthony Celi
{"title":"利用物理测量和记录分析进行低成本、便捷的疾病筛查。","authors":"Jay Chandra, Raymond Lin, Devin Kancherla, Sophia Scott, Daniel Sul, Daniela Andrade, Sammer Marzouk, Jay M Iyer, William Wasswa, Cleva Villanueva, Leo Anthony Celi","doi":"10.1371/journal.pdig.0000574","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been substantial work in low-cost medical diagnostics based on the physical manifestations of disease. This is due to advancements in data analysis techniques and classification algorithms and the increased availability of computing power through smart devices. Smartphones and their ability to interface with simple sensors such as inertial measurement units (IMUs), microphones, piezoelectric sensors, etc., or with convenient attachments such as lenses have revolutionized the ability collect medically relevant data easily. Even if the data has relatively low resolution or signal to noise ratio, newer algorithms have made it possible to identify disease with this data. Many low-cost diagnostic tools have been created in medical fields spanning from neurology to dermatology to obstetrics. These tools are particularly useful in low-resource areas where access to expensive diagnostic equipment may not be possible. The ultimate goal would be the creation of a \"diagnostic toolkit\" consisting of a smartphone and a set of sensors and attachments that can be used to screen for a wide set of diseases in a community healthcare setting. However, there are a few concerns that still need to be overcome in low-cost diagnostics: lack of incentives to bring these devices to market, algorithmic bias, \"black box\" nature of the algorithms, and data storage/transfer concerns.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 9","pages":"e0000574"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-cost and convenient screening of disease using analysis of physical measurements and recordings.\",\"authors\":\"Jay Chandra, Raymond Lin, Devin Kancherla, Sophia Scott, Daniel Sul, Daniela Andrade, Sammer Marzouk, Jay M Iyer, William Wasswa, Cleva Villanueva, Leo Anthony Celi\",\"doi\":\"10.1371/journal.pdig.0000574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, there has been substantial work in low-cost medical diagnostics based on the physical manifestations of disease. This is due to advancements in data analysis techniques and classification algorithms and the increased availability of computing power through smart devices. Smartphones and their ability to interface with simple sensors such as inertial measurement units (IMUs), microphones, piezoelectric sensors, etc., or with convenient attachments such as lenses have revolutionized the ability collect medically relevant data easily. Even if the data has relatively low resolution or signal to noise ratio, newer algorithms have made it possible to identify disease with this data. Many low-cost diagnostic tools have been created in medical fields spanning from neurology to dermatology to obstetrics. These tools are particularly useful in low-resource areas where access to expensive diagnostic equipment may not be possible. The ultimate goal would be the creation of a \\\"diagnostic toolkit\\\" consisting of a smartphone and a set of sensors and attachments that can be used to screen for a wide set of diseases in a community healthcare setting. However, there are a few concerns that still need to be overcome in low-cost diagnostics: lack of incentives to bring these devices to market, algorithmic bias, \\\"black box\\\" nature of the algorithms, and data storage/transfer concerns.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"3 9\",\"pages\":\"e0000574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在基于疾病物理表现的低成本医疗诊断方面开展了大量工作。这得益于数据分析技术和分类算法的进步,以及智能设备计算能力的提高。智能手机及其与惯性测量单元 (IMU)、麦克风、压电传感器等简单传感器的接口能力,或与镜头等便捷附件的接口能力,彻底改变了轻松收集医学相关数据的能力。即使数据的分辨率或信噪比相对较低,较新的算法也能通过这些数据识别疾病。从神经病学、皮肤病学到产科,许多低成本的诊断工具在医疗领域应运而生。在无法获得昂贵诊断设备的资源匮乏地区,这些工具尤其有用。我们的最终目标是创建一个 "诊断工具包",其中包括一部智能手机、一套传感器和附件,可用于在社区医疗环境中筛查各种疾病。然而,低成本诊断仍有一些问题需要克服:缺乏将这些设备推向市场的动力、算法偏差、算法的 "黑箱 "性质以及数据存储/传输问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-cost and convenient screening of disease using analysis of physical measurements and recordings.

In recent years, there has been substantial work in low-cost medical diagnostics based on the physical manifestations of disease. This is due to advancements in data analysis techniques and classification algorithms and the increased availability of computing power through smart devices. Smartphones and their ability to interface with simple sensors such as inertial measurement units (IMUs), microphones, piezoelectric sensors, etc., or with convenient attachments such as lenses have revolutionized the ability collect medically relevant data easily. Even if the data has relatively low resolution or signal to noise ratio, newer algorithms have made it possible to identify disease with this data. Many low-cost diagnostic tools have been created in medical fields spanning from neurology to dermatology to obstetrics. These tools are particularly useful in low-resource areas where access to expensive diagnostic equipment may not be possible. The ultimate goal would be the creation of a "diagnostic toolkit" consisting of a smartphone and a set of sensors and attachments that can be used to screen for a wide set of diseases in a community healthcare setting. However, there are a few concerns that still need to be overcome in low-cost diagnostics: lack of incentives to bring these devices to market, algorithmic bias, "black box" nature of the algorithms, and data storage/transfer concerns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities to design better computer vison-assisted food diaries to support individuals and experts in dietary assessment: An observation and interview study with nutrition experts. Deep learning-based screening for locomotive syndrome using single-camera walking video: Development and validation study. A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms. On-site electronic consent in pediatrics using generic Informed Consent Service (gICS): Creating a specialized setup and collecting consent data. A feature-based qualitative assessment of smoking cessation mobile applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1