氢释放镁水凝胶通过抑制中性粒细胞外捕获物减轻椎板切除术后硬膜外纤维化。

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2024-10-15 DOI:10.1016/j.actbio.2024.09.006
Rui Mei , Jinpeng Sun , Shuchang Cao , Mohan Shi , Zeyuan Song , Feng Hua , Gaoxin Zhou , Mingshun Zhang , Jun Liu
{"title":"氢释放镁水凝胶通过抑制中性粒细胞外捕获物减轻椎板切除术后硬膜外纤维化。","authors":"Rui Mei ,&nbsp;Jinpeng Sun ,&nbsp;Shuchang Cao ,&nbsp;Mohan Shi ,&nbsp;Zeyuan Song ,&nbsp;Feng Hua ,&nbsp;Gaoxin Zhou ,&nbsp;Mingshun Zhang ,&nbsp;Jun Liu","doi":"10.1016/j.actbio.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Epidural fibrosis is a primary contributor to the failure of laminectomy surgeries, leading to the development of failed back surgery syndrome (FBSS). Post-laminectomy, neutrophils infiltrate the surgical site, generating neutrophil extracellular traps (NETs) that contribute to epidural fibrosis. Reactive oxygen species (ROS) play a pivotal role in mediating NETs formation. Molecular hydrogen, recognized for its selective antioxidant properties and biosafety, emerges as a potential therapeutic gas in suppressing epidural fibrosis. In this study, we developed an in-situ hydrogen release hydrogel that inhibits the formation of NETs and mitigates epidural scarring. Biodegradable magnesium (Mg) microspheres served as a hydrogen source, coated with PLGA to regulate hydrogen release. These microspheres (Mg@PLGA) were then incorporated into a PLGA-PEG-PLGA thermosensitive hydrogel (Mg@PLGA@Gel), providing a surgical implant for sustained, long-term hydrogen release. <em>In vitro</em> experiments confirmed the biocompatibility of the system, demonstrating that hydrogen produced by Mg@PLGA effectively neutralizes neutrophil intracellular ROS and inhibits NETs formation. Histological analyses, including H&amp;E staining, MRI, Masson staining, and immunohistochemistry, collectively indicate that Mg@PLGA@Gel is biocompatible and effectively inhibits epidural fibrosis post-laminectomy. Furthermore, Mg@PLGA@Gel inhibits ROS accumulation and NETs formation at the surgical site. These findings suggest that Mg@PLGA@Gel ensures continuous, therapeutic hydrogen concentration, providing relief from epidural fibrosis in a laminectomy mouse model.</div></div><div><h3>Statement of significance</h3><div><ul><li><span>•</span><span><div>The hydrogen-releasing hydrogel combines the therapeutic effects of a physical barrier with immunomodulation.</div></span></li><li><span>•</span><span><div>In situ-generated molecular hydrogen scavenges ROS caused by surgical stress and suppresses NETs formation.</div></span></li><li><span>•</span><span><div>The hydrogen-releasing hydrogel is demonstrated to exhibit high biocompatibility and inhibit epidural scar formation <em>in vivo</em>.</div></span></li></ul></div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"188 ","pages":"Pages 420-431"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-releasing magnesium hydrogel mitigates post laminectomy epidural fibrosis through inhibition of neutrophil extracellular traps\",\"authors\":\"Rui Mei ,&nbsp;Jinpeng Sun ,&nbsp;Shuchang Cao ,&nbsp;Mohan Shi ,&nbsp;Zeyuan Song ,&nbsp;Feng Hua ,&nbsp;Gaoxin Zhou ,&nbsp;Mingshun Zhang ,&nbsp;Jun Liu\",\"doi\":\"10.1016/j.actbio.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epidural fibrosis is a primary contributor to the failure of laminectomy surgeries, leading to the development of failed back surgery syndrome (FBSS). Post-laminectomy, neutrophils infiltrate the surgical site, generating neutrophil extracellular traps (NETs) that contribute to epidural fibrosis. Reactive oxygen species (ROS) play a pivotal role in mediating NETs formation. Molecular hydrogen, recognized for its selective antioxidant properties and biosafety, emerges as a potential therapeutic gas in suppressing epidural fibrosis. In this study, we developed an in-situ hydrogen release hydrogel that inhibits the formation of NETs and mitigates epidural scarring. Biodegradable magnesium (Mg) microspheres served as a hydrogen source, coated with PLGA to regulate hydrogen release. These microspheres (Mg@PLGA) were then incorporated into a PLGA-PEG-PLGA thermosensitive hydrogel (Mg@PLGA@Gel), providing a surgical implant for sustained, long-term hydrogen release. <em>In vitro</em> experiments confirmed the biocompatibility of the system, demonstrating that hydrogen produced by Mg@PLGA effectively neutralizes neutrophil intracellular ROS and inhibits NETs formation. Histological analyses, including H&amp;E staining, MRI, Masson staining, and immunohistochemistry, collectively indicate that Mg@PLGA@Gel is biocompatible and effectively inhibits epidural fibrosis post-laminectomy. Furthermore, Mg@PLGA@Gel inhibits ROS accumulation and NETs formation at the surgical site. These findings suggest that Mg@PLGA@Gel ensures continuous, therapeutic hydrogen concentration, providing relief from epidural fibrosis in a laminectomy mouse model.</div></div><div><h3>Statement of significance</h3><div><ul><li><span>•</span><span><div>The hydrogen-releasing hydrogel combines the therapeutic effects of a physical barrier with immunomodulation.</div></span></li><li><span>•</span><span><div>In situ-generated molecular hydrogen scavenges ROS caused by surgical stress and suppresses NETs formation.</div></span></li><li><span>•</span><span><div>The hydrogen-releasing hydrogel is demonstrated to exhibit high biocompatibility and inhibit epidural scar formation <em>in vivo</em>.</div></span></li></ul></div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"188 \",\"pages\":\"Pages 420-431\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124005221\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124005221","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

硬膜外纤维化是导致椎板切除手术失败的主要原因,从而引发背部手术失败综合征(FBSS)。椎板切除术后,中性粒细胞浸润手术部位,产生中性粒细胞胞外陷阱(NET),导致硬膜外纤维化。活性氧(ROS)在介导 NETs 的形成中起着关键作用。分子氢因其选择性抗氧化特性和生物安全性而成为抑制硬膜外纤维化的潜在治疗气体。在这项研究中,我们开发了一种原位氢释放水凝胶,它能抑制 NET 的形成并减轻硬膜外瘢痕。可生物降解的镁(Mg)微球作为氢源,外覆聚乳酸(PLGA)以调节氢的释放。然后将这些微球(Mg@PLGA)与 PLGA-PEG-PLGA 热敏水凝胶(Mg@PLGA@Gel)结合在一起,提供了一种可长期持续释放氢气的外科植入物。体外实验证实了该系统的生物相容性,证明 Mg@PLGA 产生的氢气能有效中和中性粒细胞内的 ROS 并抑制 NETs 的形成。组织学分析,包括 H&E 染色、核磁共振成像、Masson 染色和免疫组化,共同表明 Mg@PLGA@Gel 具有生物相容性,能有效抑制椎板切除术后硬膜外纤维化。此外,Mg@PLGA@Gel 还能抑制手术部位的 ROS 积累和 NET 的形成。这些研究结果表明,Mg@PLGA@Gel 可确保持续的治疗性氢浓度,从而缓解椎板切除术小鼠模型的硬膜外纤维化。意义声明-释放氢气的水凝胶结合了物理屏障和免疫调节的治疗效果。-原位生成的分子氢能清除手术应激引起的 ROS 并抑制 NETs 的形成。-氢释放水凝胶具有很高的生物相容性,可抑制体内硬膜外瘢痕的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen-releasing magnesium hydrogel mitigates post laminectomy epidural fibrosis through inhibition of neutrophil extracellular traps
Epidural fibrosis is a primary contributor to the failure of laminectomy surgeries, leading to the development of failed back surgery syndrome (FBSS). Post-laminectomy, neutrophils infiltrate the surgical site, generating neutrophil extracellular traps (NETs) that contribute to epidural fibrosis. Reactive oxygen species (ROS) play a pivotal role in mediating NETs formation. Molecular hydrogen, recognized for its selective antioxidant properties and biosafety, emerges as a potential therapeutic gas in suppressing epidural fibrosis. In this study, we developed an in-situ hydrogen release hydrogel that inhibits the formation of NETs and mitigates epidural scarring. Biodegradable magnesium (Mg) microspheres served as a hydrogen source, coated with PLGA to regulate hydrogen release. These microspheres (Mg@PLGA) were then incorporated into a PLGA-PEG-PLGA thermosensitive hydrogel (Mg@PLGA@Gel), providing a surgical implant for sustained, long-term hydrogen release. In vitro experiments confirmed the biocompatibility of the system, demonstrating that hydrogen produced by Mg@PLGA effectively neutralizes neutrophil intracellular ROS and inhibits NETs formation. Histological analyses, including H&E staining, MRI, Masson staining, and immunohistochemistry, collectively indicate that Mg@PLGA@Gel is biocompatible and effectively inhibits epidural fibrosis post-laminectomy. Furthermore, Mg@PLGA@Gel inhibits ROS accumulation and NETs formation at the surgical site. These findings suggest that Mg@PLGA@Gel ensures continuous, therapeutic hydrogen concentration, providing relief from epidural fibrosis in a laminectomy mouse model.

Statement of significance

  • The hydrogen-releasing hydrogel combines the therapeutic effects of a physical barrier with immunomodulation.
  • In situ-generated molecular hydrogen scavenges ROS caused by surgical stress and suppresses NETs formation.
  • The hydrogen-releasing hydrogel is demonstrated to exhibit high biocompatibility and inhibit epidural scar formation in vivo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Methylglyoxal alters collagen fibril nanostiffness and surface potential Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions Mixed-charge hyperbranched polymer nanoparticles with selective antibacterial action for fighting antimicrobial resistance Deciphering the complex mechanics of atherosclerotic plaques: A hybrid hierarchical theory-microrheology approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1