铁蛋白沉积症与口腔鳞状细胞癌:连接点,向前迈进。

IF 3 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Frontiers in oral health Pub Date : 2024-09-04 eCollection Date: 2024-01-01 DOI:10.3389/froh.2024.1461022
Alessandro Antonelli, Anna Martina Battaglia, Alessandro Sacco, Lavinia Petriaggi, Emanuele Giorgio, Selene Barone, Flavia Biamonte, Amerigo Giudice
{"title":"铁蛋白沉积症与口腔鳞状细胞癌:连接点,向前迈进。","authors":"Alessandro Antonelli, Anna Martina Battaglia, Alessandro Sacco, Lavinia Petriaggi, Emanuele Giorgio, Selene Barone, Flavia Biamonte, Amerigo Giudice","doi":"10.3389/froh.2024.1461022","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.</p>","PeriodicalId":94016,"journal":{"name":"Frontiers in oral health","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward.\",\"authors\":\"Alessandro Antonelli, Anna Martina Battaglia, Alessandro Sacco, Lavinia Petriaggi, Emanuele Giorgio, Selene Barone, Flavia Biamonte, Amerigo Giudice\",\"doi\":\"10.3389/froh.2024.1461022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.</p>\",\"PeriodicalId\":94016,\"journal\":{\"name\":\"Frontiers in oral health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in oral health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/froh.2024.1461022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in oral health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/froh.2024.1461022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

口腔鳞状细胞癌(OSCC)是一种侵袭性疾病,对其生物学特性的不完全了解导致其临床治疗不当和预后不良。因此,鉴定治疗 OSCC 的新分子靶点至关重要。铁变态反应是一种调节性细胞死亡,是由铁依赖性活性氧积累以及由此引起的脂膜氧化损伤造成的。在过去的五年中,越来越多的研究报告称,OSCC 对铁变态反应诱导敏感,铁变态反应诱导剂对 OSCC 有显著的抗肿瘤作用,即使是那些对化疗和放疗等常见方法反应较差的患者也不例外。此外,由于铁突变被认为是一种免疫原性细胞死亡,它可能会调节针对 OSCC 的免疫反应。在这篇综述中,我们总结了迄今为止已发现的OSCC中的高铁血症调控机制和基于高铁血症相关基因的预后模型。此外,我们还讨论了诱导铁变态反应作为一种新策略直接治疗 OSCC 或提高对其他方法的敏感性的观点。最后,我们通过硅学分析整合了本文所综述的研究中出现的数据,并就 OSCC 中铁蛋白沉降和自噬之间的潜在相互联系提出了新的个人观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward.

Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Oral health-related beliefs among a sample of pregnant women in Southwestern Ontario: a descriptive study. Oral biofilm composition and phenotype in caries-active and caries-free children. The oral microbiome of children in health and disease-a literature review. Uptake of the Interim Canada Dental Benefit: an investigation of data from the first 18 months of the program. Aesthetic lip filler augmentation is not free of adverse reactions: lack of evidence-based practice from a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1