利用合并树神经网络进行快速精确的拓扑比较。

Yu Qin, Brittany Terese Fasy, Carola Wenk, Brian Summa
{"title":"利用合并树神经网络进行快速精确的拓扑比较。","authors":"Yu Qin, Brittany Terese Fasy, Carola Wenk, Brian Summa","doi":"10.1109/TVCG.2024.3456395","DOIUrl":null,"url":null,"abstract":"<p><p>Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100× on the benchmark datasets while maintaining an error rate below 0.1%.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Precise Topological Comparison with Merge Tree Neural Networks.\",\"authors\":\"Yu Qin, Brittany Terese Fasy, Carola Wenk, Brian Summa\",\"doi\":\"10.1109/TVCG.2024.3456395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100× on the benchmark datasets while maintaining an error rate below 0.1%.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2024.3456395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3456395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合并树是标量领域科学可视化的重要工具;然而,目前的合并树比较方法计算成本高昂,这主要是由于树节点之间需要进行穷举匹配。为了应对这一挑战,我们引入了合并树神经网络(MTNN),这是一种专为合并树比较设计的学习型神经网络模型。MTNN 可以实现快速、高质量的相似性计算。我们首先演示了如何训练图神经网络(作为图的有效编码器出现),以便在向量空间中生成合并树的嵌入,从而实现高效的相似性比较。接下来,我们建立了新颖的 MTNN 模型,通过将树和节点嵌入与新的拓扑关注机制相结合,进一步改进了相似性比较。我们在不同领域的真实数据上演示了模型的有效性,并检验了模型在不同数据集上的通用性。我们的实验分析证明了我们的方法在准确性和效率方面的优势。特别是,在基准数据集上,我们的速度比先前的先进水平提高了 100 倍以上,而错误率却保持在 0.1% 以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid and Precise Topological Comparison with Merge Tree Neural Networks.

Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100× on the benchmark datasets while maintaining an error rate below 0.1%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"where Did My Apps Go?" Supporting Scalable and Transition-Aware Access to Everyday Applications in Head-Worn Augmented Reality. PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction. From Dashboard Zoo to Census: A Case Study With Tableau Public. Authoring Data-Driven Chart Animations. Super-NeRF: View-consistent Detail Generation for NeRF Super-resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1