{"title":"单电感双输出升压转换器的自适应反步进滑模控制。","authors":"Minggui Mo, Jiarong Wu, Weilin Wu","doi":"10.1016/j.isatra.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce the cross-regulation and improve the dynamic response performance of a single-inductor double-output Boost converter, an adaptive backstepping sliding mode control (ABSMC) strategy is proposed in this paper. The nonlinear mathematical model of the converter is established, an output function satisfying the exact feedback linearization (EFL) is constructed based on the inverse system theory, and the linearization and decoupling of the model are implemented. Meanwhile, the problem of EFL heavily relying on an exact model is solved by combining backstepping control with sliding mode control. Furthermore, an adaptive reaching law is proposed to adjust the gain of the switching function, and the chattering phenomenon of sliding mode control is reduced. The stability of the system is proven according to the Lyapunov stability theorem. Finally, compared with the existing control methods, both the simulation results and experimental results verify the effectiveness and superiority of the proposed ABSMC strategy.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"155 ","pages":"Pages 454-462"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive backstepping sliding mode control for single-inductor double-output boost converter\",\"authors\":\"Minggui Mo, Jiarong Wu, Weilin Wu\",\"doi\":\"10.1016/j.isatra.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To reduce the cross-regulation and improve the dynamic response performance of a single-inductor double-output Boost converter, an adaptive backstepping sliding mode control (ABSMC) strategy is proposed in this paper. The nonlinear mathematical model of the converter is established, an output function satisfying the exact feedback linearization (EFL) is constructed based on the inverse system theory, and the linearization and decoupling of the model are implemented. Meanwhile, the problem of EFL heavily relying on an exact model is solved by combining backstepping control with sliding mode control. Furthermore, an adaptive reaching law is proposed to adjust the gain of the switching function, and the chattering phenomenon of sliding mode control is reduced. The stability of the system is proven according to the Lyapunov stability theorem. Finally, compared with the existing control methods, both the simulation results and experimental results verify the effectiveness and superiority of the proposed ABSMC strategy.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"155 \",\"pages\":\"Pages 454-462\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824004464\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004464","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive backstepping sliding mode control for single-inductor double-output boost converter
To reduce the cross-regulation and improve the dynamic response performance of a single-inductor double-output Boost converter, an adaptive backstepping sliding mode control (ABSMC) strategy is proposed in this paper. The nonlinear mathematical model of the converter is established, an output function satisfying the exact feedback linearization (EFL) is constructed based on the inverse system theory, and the linearization and decoupling of the model are implemented. Meanwhile, the problem of EFL heavily relying on an exact model is solved by combining backstepping control with sliding mode control. Furthermore, an adaptive reaching law is proposed to adjust the gain of the switching function, and the chattering phenomenon of sliding mode control is reduced. The stability of the system is proven according to the Lyapunov stability theorem. Finally, compared with the existing control methods, both the simulation results and experimental results verify the effectiveness and superiority of the proposed ABSMC strategy.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.