{"title":"通过非周期性间歇通信实现多代理系统的有限时间混合脉冲编队跟踪控制","authors":"Zhanlue Liang, Xinzhi Liu","doi":"10.1016/j.isatra.2024.09.012","DOIUrl":null,"url":null,"abstract":"<p><p>This article studies the problem of formation tracking control in multi-agent systems, achieved in finite time, under challenging conditions such as strong nonlinearity, aperiodic intermittent communication, and time-delay effects, all within a hybrid impulsive framework. The impulses are categorized as either stabilizing control impulses or disruptive impulses. Furthermore, by integrating Lyapunov-based stability theory, graph theory, and the linear matrix inequality (LMI) method, new stability criteria are established. These criteria ensure finite-time intermittent formation tracking while considering weak Lyapunov inequality conditions, intermittent communication rates, and time-varying gain strengths. Additionally, the approach manages an indefinite number of impulsive moments and adjusts the control domain's width based on the average impulsive interval and state-dependent control width. Numerical simulations are provided to validate the applicability and effectiveness of the proposed formation tracking control protocols.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time hybrid impulsive formation tracking control of multi-agent systems via aperiodic intermittent communication.\",\"authors\":\"Zhanlue Liang, Xinzhi Liu\",\"doi\":\"10.1016/j.isatra.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article studies the problem of formation tracking control in multi-agent systems, achieved in finite time, under challenging conditions such as strong nonlinearity, aperiodic intermittent communication, and time-delay effects, all within a hybrid impulsive framework. The impulses are categorized as either stabilizing control impulses or disruptive impulses. Furthermore, by integrating Lyapunov-based stability theory, graph theory, and the linear matrix inequality (LMI) method, new stability criteria are established. These criteria ensure finite-time intermittent formation tracking while considering weak Lyapunov inequality conditions, intermittent communication rates, and time-varying gain strengths. Additionally, the approach manages an indefinite number of impulsive moments and adjusts the control domain's width based on the average impulsive interval and state-dependent control width. Numerical simulations are provided to validate the applicability and effectiveness of the proposed formation tracking control protocols.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.09.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite-time hybrid impulsive formation tracking control of multi-agent systems via aperiodic intermittent communication.
This article studies the problem of formation tracking control in multi-agent systems, achieved in finite time, under challenging conditions such as strong nonlinearity, aperiodic intermittent communication, and time-delay effects, all within a hybrid impulsive framework. The impulses are categorized as either stabilizing control impulses or disruptive impulses. Furthermore, by integrating Lyapunov-based stability theory, graph theory, and the linear matrix inequality (LMI) method, new stability criteria are established. These criteria ensure finite-time intermittent formation tracking while considering weak Lyapunov inequality conditions, intermittent communication rates, and time-varying gain strengths. Additionally, the approach manages an indefinite number of impulsive moments and adjusts the control domain's width based on the average impulsive interval and state-dependent control width. Numerical simulations are provided to validate the applicability and effectiveness of the proposed formation tracking control protocols.