探索内分泌生长因子--结构、功能和生物医学应用。

International journal of biochemistry and molecular biology Pub Date : 2024-08-25 eCollection Date: 2024-01-01 DOI:10.62347/PALK2137
Phuc Phan, Gaёtane Ternier, Oshadi Edirisinghe, Thallapuranam Krishnaswamy Suresh Kumar
{"title":"探索内分泌生长因子--结构、功能和生物医学应用。","authors":"Phuc Phan, Gaёtane Ternier, Oshadi Edirisinghe, Thallapuranam Krishnaswamy Suresh Kumar","doi":"10.62347/PALK2137","DOIUrl":null,"url":null,"abstract":"<p><p>The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.</p>","PeriodicalId":94044,"journal":{"name":"International journal of biochemistry and molecular biology","volume":"15 4","pages":"68-99"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring endocrine FGFs - structures, functions and biomedical applications.\",\"authors\":\"Phuc Phan, Gaёtane Ternier, Oshadi Edirisinghe, Thallapuranam Krishnaswamy Suresh Kumar\",\"doi\":\"10.62347/PALK2137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.</p>\",\"PeriodicalId\":94044,\"journal\":{\"name\":\"International journal of biochemistry and molecular biology\",\"volume\":\"15 4\",\"pages\":\"68-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62347/PALK2137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/PALK2137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成纤维细胞生长因子(FGFs)家族由 22 个成员组成,在细胞中具有从细胞发育到新陈代谢等多种生物学功能。根据其三种作用模式,该家族可进一步分为三个亚群。FGF19、FGF21 和 FGF23 属于内分泌型 FGF,以类似激素/内分泌的方式调节各种代谢活动。然而,内分泌家族的所有三个成员都需要 FGF 受体(FGFRs)和 klotho 共受体来激发其功能。α-klotho 和 β-klotho 可作为支架,使内分泌型 FGF 靠近其受体(FGFRs),形成活性复合物。为了进一步了解内分泌 FGFs 复杂的分子相互作用和生理活性,有关代谢 FGFs 结构、机制和生理见解的大量新研究已经发表。在此,我们旨在回顾近年来内分泌 FGFs 的结构、生理功能、与同源受体的结合机制以及新型生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring endocrine FGFs - structures, functions and biomedical applications.

The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance prediction of polypeptide derivatives as efficient potential microbial inhibitors: a computational approach. Cadmium toxicity on endoplasmic reticulum functioning. Exploring endocrine FGFs - structures, functions and biomedical applications. Exploring the seas for cancer cures: the promise of marine-derived bioactive peptide. Marine bioactive peptides with anticancer potential, a narrative review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1