利用天然酚类结构单元构建用于蛋白质生物矿化的氢键超分子生物杂交框架。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-09-18 DOI:10.1039/D4TB01680G
Qiuping Xie, Yue Wu, Haojie Zhang, Qinling Liu, Yunxiang He, Ian Manners and Junling Guo
{"title":"利用天然酚类结构单元构建用于蛋白质生物矿化的氢键超分子生物杂交框架。","authors":"Qiuping Xie, Yue Wu, Haojie Zhang, Qinling Liu, Yunxiang He, Ian Manners and Junling Guo","doi":"10.1039/D4TB01680G","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π–π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π–π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 41","pages":" 10624-10634"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-bonded supramolecular biohybrid frameworks for protein biomineralization constructed from natural phenolic building blocks†\",\"authors\":\"Qiuping Xie, Yue Wu, Haojie Zhang, Qinling Liu, Yunxiang He, Ian Manners and Junling Guo\",\"doi\":\"10.1039/D4TB01680G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π–π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π–π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 41\",\"pages\":\" 10624-10634\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01680g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01680g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

氢键介导的超分子晶体材料(如氢键有机框架)为蛋白质的生物矿化提供了一种前景广阔的策略,然而分子构件中特定正交单元的复杂设计和多步合成是一项重大的合成挑战。鉴定出既能促进超分子框架构建又能稳定结合蛋白质的新型天然构筑模块一直是一个难以实现的目标。在这里,我们介绍了一种多功能组装策略,可将多种蛋白质和酚类构筑基块组织成高结晶氢键超分子酚框架(ProteinX@SPF)。天然鞣花酸(EA)呈中心对称结构,分子两侧各有儿茶酚基团,有利于与蛋白质氨基酸残基发生氢键作用,从而形成原核。随后,EA 通过氢键和 π-π 相互作用自组装成 ProteinX@SPF。多重氢键相互作用赋予结构刚性和方向完整性,使 ProteinX@SPF 生物混合物在保持蛋白质生物活性的同时,还具有出色的抗恶劣条件能力。此外,π-π相互作用引起的超分子堆叠使 ProteinX@SPF 具有长程有序纳米通道,可作为筛分催化底物的门控,从而提高生物催化的特异性。这项工作揭示了利用天然构件进行生物矿化的功能性生物杂交,在生物催化、传感和纳米医学方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen-bonded supramolecular biohybrid frameworks for protein biomineralization constructed from natural phenolic building blocks†

Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π–π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π–π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Back cover Expression of concern: Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer Reconfiguring the endogenous electric field of a wound through a conductive hydrogel for effective exudate management to enhance skin wound healing†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1