Minjie Song , Shaoning Geng , Yue Qiu , Boan Xu , Yilin Wang , Ping Jiang , Yun Hu , Shixuan Li
{"title":"铝合金焊缝微观结构演变的原位 EBSD-DIC 模拟","authors":"Minjie Song , Shaoning Geng , Yue Qiu , Boan Xu , Yilin Wang , Ping Jiang , Yun Hu , Shixuan Li","doi":"10.1016/j.ijmecsci.2024.109741","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive understanding of the dynamic evolution of weld microstructure under external loads can provide key insights for high-performance laser welding. A novel in-situ EBSD-DIC simulation method is introduced to study the microstructure evolution of laser welded aluminum alloys under uniaxial tensile action. An advanced crystal plastic finite element model (CPFEM) is developed, which combines the real microstructure, grain orientation and grain size effects. The results show that the dislocation density in columnar grain zone is higher than that in equiaxed grain zone. The continuous accumulation of dislocations in the columnar region results in a high work-hardening rate. This high work hardening rate enhances the plastic deformation capacity of the columnar crystal region, resulting in local strain concentration. Columnar zones are more prone to fracture because the high-strain region is a potential fracture site. In addition, low Angle grain boundary (LAGBs) is one of the reasons that the dislocation density of the columnar grain zone is higher than that of equiaxed grain zone during tensile process, which is conducive to dislocation slip of columnar grains. This study is a fundamental innovation in simulating the microstructure evolution of laser welding. This marks a major breakthrough in simulating the evolution of crystallographic features such as grain orientation, microstress and strain and dislocation density under external loads. This work can further provide practical guidance for “microstructure characteristics - mechanical property regulation”.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109741"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ EBSD-DIC simulation of microstructure evolution of aluminum alloy welds\",\"authors\":\"Minjie Song , Shaoning Geng , Yue Qiu , Boan Xu , Yilin Wang , Ping Jiang , Yun Hu , Shixuan Li\",\"doi\":\"10.1016/j.ijmecsci.2024.109741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A comprehensive understanding of the dynamic evolution of weld microstructure under external loads can provide key insights for high-performance laser welding. A novel in-situ EBSD-DIC simulation method is introduced to study the microstructure evolution of laser welded aluminum alloys under uniaxial tensile action. An advanced crystal plastic finite element model (CPFEM) is developed, which combines the real microstructure, grain orientation and grain size effects. The results show that the dislocation density in columnar grain zone is higher than that in equiaxed grain zone. The continuous accumulation of dislocations in the columnar region results in a high work-hardening rate. This high work hardening rate enhances the plastic deformation capacity of the columnar crystal region, resulting in local strain concentration. Columnar zones are more prone to fracture because the high-strain region is a potential fracture site. In addition, low Angle grain boundary (LAGBs) is one of the reasons that the dislocation density of the columnar grain zone is higher than that of equiaxed grain zone during tensile process, which is conducive to dislocation slip of columnar grains. This study is a fundamental innovation in simulating the microstructure evolution of laser welding. This marks a major breakthrough in simulating the evolution of crystallographic features such as grain orientation, microstress and strain and dislocation density under external loads. This work can further provide practical guidance for “microstructure characteristics - mechanical property regulation”.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"284 \",\"pages\":\"Article 109741\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007823\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007823","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In-situ EBSD-DIC simulation of microstructure evolution of aluminum alloy welds
A comprehensive understanding of the dynamic evolution of weld microstructure under external loads can provide key insights for high-performance laser welding. A novel in-situ EBSD-DIC simulation method is introduced to study the microstructure evolution of laser welded aluminum alloys under uniaxial tensile action. An advanced crystal plastic finite element model (CPFEM) is developed, which combines the real microstructure, grain orientation and grain size effects. The results show that the dislocation density in columnar grain zone is higher than that in equiaxed grain zone. The continuous accumulation of dislocations in the columnar region results in a high work-hardening rate. This high work hardening rate enhances the plastic deformation capacity of the columnar crystal region, resulting in local strain concentration. Columnar zones are more prone to fracture because the high-strain region is a potential fracture site. In addition, low Angle grain boundary (LAGBs) is one of the reasons that the dislocation density of the columnar grain zone is higher than that of equiaxed grain zone during tensile process, which is conducive to dislocation slip of columnar grains. This study is a fundamental innovation in simulating the microstructure evolution of laser welding. This marks a major breakthrough in simulating the evolution of crystallographic features such as grain orientation, microstress and strain and dislocation density under external loads. This work can further provide practical guidance for “microstructure characteristics - mechanical property regulation”.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.