Bharath Raj Madhanagopal, Hannah Talbot, Arlin Rodriguez, Arun Richard Chandrasekaran
{"title":"Switchback RNA。","authors":"Bharath Raj Madhanagopal, Hannah Talbot, Arlin Rodriguez, Arun Richard Chandrasekaran","doi":"10.1021/acschembio.4c00518","DOIUrl":null,"url":null,"abstract":"<p><p>Intricately designed DNA and RNA motifs guide the assembly of robust and functional nucleic acid nanostructures. In this work, we present a globally left-handed RNA motif with two parallel strands called switchback RNA and report its assembly, biophysical, and biochemical characterization. Switchback RNA can be assembled in buffers without Mg<sup>2+</sup>, with improved thermal stability in buffers containing Mg<sup>2+</sup>, Na<sup>+</sup>, or K<sup>+</sup>. Differences in the binding of small molecules to switchback RNA and conventional RNA indicate design-based approaches for small molecule loading on RNA nanostructures. Further, the differential affinity of the two component strands in switchback or conventional duplex conformations allows for toehold-less strand displacement. Enzyme studies showed that the switchback and conventional RNA structures have similar levels of nuclease resistance. These results provide insights for employing switchback RNA as a structural motif in RNA nanotechnology. Our observation that RNA strands with switchback complementarity can form stable complexes at low magnesium concentrations encourages studies into the potential occurrence of switchback RNA in nature.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Switchback RNA.\",\"authors\":\"Bharath Raj Madhanagopal, Hannah Talbot, Arlin Rodriguez, Arun Richard Chandrasekaran\",\"doi\":\"10.1021/acschembio.4c00518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intricately designed DNA and RNA motifs guide the assembly of robust and functional nucleic acid nanostructures. In this work, we present a globally left-handed RNA motif with two parallel strands called switchback RNA and report its assembly, biophysical, and biochemical characterization. Switchback RNA can be assembled in buffers without Mg<sup>2+</sup>, with improved thermal stability in buffers containing Mg<sup>2+</sup>, Na<sup>+</sup>, or K<sup>+</sup>. Differences in the binding of small molecules to switchback RNA and conventional RNA indicate design-based approaches for small molecule loading on RNA nanostructures. Further, the differential affinity of the two component strands in switchback or conventional duplex conformations allows for toehold-less strand displacement. Enzyme studies showed that the switchback and conventional RNA structures have similar levels of nuclease resistance. These results provide insights for employing switchback RNA as a structural motif in RNA nanotechnology. Our observation that RNA strands with switchback complementarity can form stable complexes at low magnesium concentrations encourages studies into the potential occurrence of switchback RNA in nature.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00518\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00518","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intricately designed DNA and RNA motifs guide the assembly of robust and functional nucleic acid nanostructures. In this work, we present a globally left-handed RNA motif with two parallel strands called switchback RNA and report its assembly, biophysical, and biochemical characterization. Switchback RNA can be assembled in buffers without Mg2+, with improved thermal stability in buffers containing Mg2+, Na+, or K+. Differences in the binding of small molecules to switchback RNA and conventional RNA indicate design-based approaches for small molecule loading on RNA nanostructures. Further, the differential affinity of the two component strands in switchback or conventional duplex conformations allows for toehold-less strand displacement. Enzyme studies showed that the switchback and conventional RNA structures have similar levels of nuclease resistance. These results provide insights for employing switchback RNA as a structural motif in RNA nanotechnology. Our observation that RNA strands with switchback complementarity can form stable complexes at low magnesium concentrations encourages studies into the potential occurrence of switchback RNA in nature.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.