水杨甙通过抑制氧化应激、线粒体损伤和细胞凋亡对败血症急性肾损伤的保护作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-01 DOI:10.1248/bpb.b24-00470
Dan-Ni Zhong, Yun-Ping Pan, Heng Fan, Jie-Li Lv
{"title":"水杨甙通过抑制氧化应激、线粒体损伤和细胞凋亡对败血症急性肾损伤的保护作用","authors":"Dan-Ni Zhong, Yun-Ping Pan, Heng Fan, Jie-Li Lv","doi":"10.1248/bpb.b24-00470","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effect of Salidroside on Acute Kidney Injury in Sepsis by Inhibiting Oxidative Stress, Mitochondrial Damage, and Cell Apoptosis.\",\"authors\":\"Dan-Ni Zhong, Yun-Ping Pan, Heng Fan, Jie-Li Lv\",\"doi\":\"10.1248/bpb.b24-00470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

急性肾损伤(AKI)是败血症患者常见的并发症之一。我们的目的是研究柳氮磺吡啶(SLDS)对盲肠结扎和穿孔(CLP)诱发的急性肾损伤的保护机制。我们利用盲肠结扎和穿孔建立了败血症模型,并用柳氮磺吡啶预处理小鼠。我们使用生化方法测量肾功能、炎症因子和氧化酶水平。我们用透射电子显微镜观察线粒体损伤,用末端脱氧核苷酸转移酶介导的脱氧尿苷三磷酸缺口端标记(TUNEL)检测肾小管上皮细胞(TECs)的凋亡,用RT-定量PCR(qPCR)检测凋亡基因的表达。CLP诱导肾脏病理损伤和肾功能下降,激活炎症因子和氧化酶,导致线粒体损伤和TECs凋亡增加。SLDS预处理可改善肾脏病理损伤,降低肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6和丙二醛的水平,提高谷胱甘肽过氧化物酶、超氧化物歧化酶和过氧化氢酶的水平。此外,SLDS 还能稳定 CLP 诱导的线粒体损伤,抑制 TECs 细胞凋亡,提高 Bcl-2 mRNA 水平,降低 Bax 和 Caspase-3 mRNA 水平。SLDS通过抑制氧化应激、线粒体损伤和TECs细胞凋亡来保护CLP诱导的AKI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protective Effect of Salidroside on Acute Kidney Injury in Sepsis by Inhibiting Oxidative Stress, Mitochondrial Damage, and Cell Apoptosis.

Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1