{"title":"嫦娥五号任务返回的月球碎屑的熔化和快速凝固。","authors":"Xian Zhang, Yiwei Liu, Shaofan Zhao, Jian Song, Wei Yao, Weihua Wang, Zhigang Zou, Mengfei Yang","doi":"10.34133/research.0486","DOIUrl":null,"url":null,"abstract":"<p><p>Melting and solidification of lunar regolith are pivotal for comprehending the evolutionary dynamics of lunar volcanism, geology, and impact history. Additionally, insights gained from these processes can contribute to the advancement of in situ resource utilization technologies, for instance additive manufacturing and resource extraction systems. Herein, we conduct the direct observation of the melting and rapid solidification of lunar particles returned by the Chang'E 5 mission. The melting temperature and melting sequence were obtained. Bubble generation, growth, and release were clearly observed, with a maximum bubble diameter of 5 µm, which is supposed to be according to the release of volatiles that embedded in the particles. During the solidification process, evident crystallization occurred with incremental crystal growth rate approximately of 27 nm/s. Scanning electron microscopy and energy-dispersive x-ray spectroscopy results verified that the Fe-rich mineral crystalizes first. These results would improve the understanding of the evolution of lunar volcanism, geology, and impact history.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0486"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417502/pdf/","citationCount":"0","resultStr":"{\"title\":\"Melting and Rapid Solidification of Lunar Regolith Particles Returned by Chang'E-5 Mission.\",\"authors\":\"Xian Zhang, Yiwei Liu, Shaofan Zhao, Jian Song, Wei Yao, Weihua Wang, Zhigang Zou, Mengfei Yang\",\"doi\":\"10.34133/research.0486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melting and solidification of lunar regolith are pivotal for comprehending the evolutionary dynamics of lunar volcanism, geology, and impact history. Additionally, insights gained from these processes can contribute to the advancement of in situ resource utilization technologies, for instance additive manufacturing and resource extraction systems. Herein, we conduct the direct observation of the melting and rapid solidification of lunar particles returned by the Chang'E 5 mission. The melting temperature and melting sequence were obtained. Bubble generation, growth, and release were clearly observed, with a maximum bubble diameter of 5 µm, which is supposed to be according to the release of volatiles that embedded in the particles. During the solidification process, evident crystallization occurred with incremental crystal growth rate approximately of 27 nm/s. Scanning electron microscopy and energy-dispersive x-ray spectroscopy results verified that the Fe-rich mineral crystalizes first. These results would improve the understanding of the evolution of lunar volcanism, geology, and impact history.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0486\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417502/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0486\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0486","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
摘要
月球渣岩的熔化和凝固对于理解月球火山活动、地质和撞击历史的演变动态至关重要。此外,从这些过程中获得的洞察力有助于促进原地资源利用技术的发展,例如增材制造和资源提取系统。在此,我们对嫦娥五号任务返回的月球颗粒的熔化和快速凝固过程进行了直接观测。我们获得了熔化温度和熔化顺序。我们清楚地观测到了气泡的产生、生长和释放,最大气泡直径为 5 µm,这应该与颗粒中蕴含的挥发物的释放有关。在凝固过程中,出现了明显的结晶现象,晶体增长率约为 27 nm/s。扫描电子显微镜和能量色散 X 射线光谱结果证实,富含铁的矿物首先结晶。这些结果将增进对月球火山活动、地质和撞击历史演变的了解。
Melting and Rapid Solidification of Lunar Regolith Particles Returned by Chang'E-5 Mission.
Melting and solidification of lunar regolith are pivotal for comprehending the evolutionary dynamics of lunar volcanism, geology, and impact history. Additionally, insights gained from these processes can contribute to the advancement of in situ resource utilization technologies, for instance additive manufacturing and resource extraction systems. Herein, we conduct the direct observation of the melting and rapid solidification of lunar particles returned by the Chang'E 5 mission. The melting temperature and melting sequence were obtained. Bubble generation, growth, and release were clearly observed, with a maximum bubble diameter of 5 µm, which is supposed to be according to the release of volatiles that embedded in the particles. During the solidification process, evident crystallization occurred with incremental crystal growth rate approximately of 27 nm/s. Scanning electron microscopy and energy-dispersive x-ray spectroscopy results verified that the Fe-rich mineral crystalizes first. These results would improve the understanding of the evolution of lunar volcanism, geology, and impact history.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.