Paloma Bianca Orso, Alberto Gonçalves Evangelista, Tiago de Melo Nazareth, Carlos Luz, Keliani Bordin, Giuseppe Meca, Fernando Bittencourt Luciano
{"title":"Velezensis CL197 芽孢杆菌:从小麦中分离出的玉米赤霉烯酮解毒菌株,有望用于动物生产。","authors":"Paloma Bianca Orso, Alberto Gonçalves Evangelista, Tiago de Melo Nazareth, Carlos Luz, Keliani Bordin, Giuseppe Meca, Fernando Bittencourt Luciano","doi":"10.1007/s11259-024-10552-4","DOIUrl":null,"url":null,"abstract":"<p><p>Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, and cause contamination of food and feed, with impacts in animal production and in food production chain. Effective detoxifying methods, such as biodegradation, are therefore required. This study aimed to isolate microorganisms and screen ZEA detoxifying strains. As a result, 197 microorganisms were isolated, and six were initially selected after colorimetric screening. ZEA (1 µg/mL) was added to culture media, and after 24 h, all six microorganisms were able to degrade ZEA, without the formation of α-ZOL. One isolate eliminated ~ 99% of ZEA and was identified as Bacillus velezensis CL197. ZEA metabolites produced by the bacteria were evaluated, and no metabolites with greater or similar toxicity than ZEA were detected. This strain was applied to swine in vitro digestion, and up to 64% of ZEA was degraded. B. velezensis CL197 significantly degraded ZEA, demonstrating potential to be used as a detoxifying agent in the food production chain as a biocontrol agent.</p>","PeriodicalId":23690,"journal":{"name":"Veterinary Research Communications","volume":" ","pages":"3847-3857"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production.\",\"authors\":\"Paloma Bianca Orso, Alberto Gonçalves Evangelista, Tiago de Melo Nazareth, Carlos Luz, Keliani Bordin, Giuseppe Meca, Fernando Bittencourt Luciano\",\"doi\":\"10.1007/s11259-024-10552-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, and cause contamination of food and feed, with impacts in animal production and in food production chain. Effective detoxifying methods, such as biodegradation, are therefore required. This study aimed to isolate microorganisms and screen ZEA detoxifying strains. As a result, 197 microorganisms were isolated, and six were initially selected after colorimetric screening. ZEA (1 µg/mL) was added to culture media, and after 24 h, all six microorganisms were able to degrade ZEA, without the formation of α-ZOL. One isolate eliminated ~ 99% of ZEA and was identified as Bacillus velezensis CL197. ZEA metabolites produced by the bacteria were evaluated, and no metabolites with greater or similar toxicity than ZEA were detected. This strain was applied to swine in vitro digestion, and up to 64% of ZEA was degraded. B. velezensis CL197 significantly degraded ZEA, demonstrating potential to be used as a detoxifying agent in the food production chain as a biocontrol agent.</p>\",\"PeriodicalId\":23690,\"journal\":{\"name\":\"Veterinary Research Communications\",\"volume\":\" \",\"pages\":\"3847-3857\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research Communications\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11259-024-10552-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research Communications","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11259-024-10552-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production.
Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, and cause contamination of food and feed, with impacts in animal production and in food production chain. Effective detoxifying methods, such as biodegradation, are therefore required. This study aimed to isolate microorganisms and screen ZEA detoxifying strains. As a result, 197 microorganisms were isolated, and six were initially selected after colorimetric screening. ZEA (1 µg/mL) was added to culture media, and after 24 h, all six microorganisms were able to degrade ZEA, without the formation of α-ZOL. One isolate eliminated ~ 99% of ZEA and was identified as Bacillus velezensis CL197. ZEA metabolites produced by the bacteria were evaluated, and no metabolites with greater or similar toxicity than ZEA were detected. This strain was applied to swine in vitro digestion, and up to 64% of ZEA was degraded. B. velezensis CL197 significantly degraded ZEA, demonstrating potential to be used as a detoxifying agent in the food production chain as a biocontrol agent.
期刊介绍:
Veterinary Research Communications publishes fully refereed research articles and topical reviews on all aspects of the veterinary sciences. Interdisciplinary articles are particularly encouraged, as are well argued reviews, even if they are somewhat controversial.
The journal is an appropriate medium in which to publish new methods, newly described diseases and new pathological findings, as these are applied to animals. The material should be of international rather than local interest. As it deliberately seeks a wide coverage, Veterinary Research Communications provides its readers with a means of keeping abreast of current developments in the entire field of veterinary science.